
Page 1 of 312

A Computer from Ground Up

A Nibble Knowledge Story

Page 2 of 312

Table of Contents

1. Preface ……………………………………………………………………………………..... 4

1.1. Preface …………………………………………………………………………………... 4

1.2. Nibble Knowledge Project Summary …………………………………………………… 6

1.3. Nibble Knowledge Project Motivation and Objective ………………………………….. 7

1.4. Acknowledgments ………………………………………………………………………. 9

2. Introduction to Computers ……………………………………………………………….. 10

2.1. Overview of Computer Organization ……………………………………………….…. 10

2.2. Operating Systems – A High Level Introduction ……………………………………… 17

2.3. Number Systems: Decimal, Binary, Hexadecimal, and Addition, Signed Binary ……... 20

2.4. Languages: Machine, Assembly and Instruction – A High Level Introduction ……….. 40

2.5. Memory – A High Level Introduction ………………………………………………..… 42

3. Combinational Logic and Sequential Logic ……………………………………………… 46

3.1. Logic Gates …………………………………………………………………………….. 46

3.2. Boolean Algebra and Equations ………………………………………………………... 53

3.3. Hardware Reduction Techniques ………………………………………………………. 60

3.4. Timing and Delays ……………………………………………………………………... 64

3.5. Multiplexers …………………………………………………………………………… 69

3.6. Flip-Flops and Latches ………………………………………………………………… 75

4. Arithmetic Circuits ………………………………………………………………………... 79

4.1. Addition ………………………………………………………………………………... 79

4.2. Subtraction …………………………………………………………………………….. 86

4.3. Counters ……………………………………………………………………………….. 87

4.4. Multiplication/Division – High Level ………………………………………………….. 96

4.5. Comparator …………………………………………………………………………… 100

4.6. Registers: Shift Registers ……………………………………………………………... 104

4.7. ALU …………………………………………………………………………………... 106

5. Computer Architecture ………………………………………………………………….. 115

5.1. Instruction Sets ……………………………………………………………………….. 115

5.2. Assembly Language ………………………………………………………………….. 119

6. Nibble Knowledge Computer High Level Design ……………………………………… 124

Page 3 of 312

7. The CPU ………………………………………………………………………………….. 129

8. Audio Controller …………………………………………………………………………. 169

9. IDE Controller …………………………………………………………………………… 189

10. PS/2 Keyboard Controller ……………………………………………………………….. 199

11. Serial Communication RS232 Controller ………………………………………………. 211

12. Software …………………………………………………………………………………... 222

13. VGA Controller ………………………………………………………………………….. 234

14. Peripheral and CPU Integration ………………………………………………………… 243

15. Glossary …………………………………………………………………………………... 248

16. Appendix …………………………………………………………………………………. 254

16.1. Oscillator Circuits – Alternate Design ………………………………………………. 254

16.2. IDE Controller – Arduino Test Code ………………………………………………... 257

16.3. PS/2 Keyboard Controller – Main VHDL Code …………………………………….. 264

16.4. PS/2 Keyboard Controller – Internal Multiplexer VHDL Code …………………….. 268

16.5. Software – Complete CUTE Basic Compiler ……………………………………….. 269

16.6. Software – Complete Macro Assembler …………………………………………….. 295

16.7. Library Function Example – 32 Bit Multiplication …………………………………. 304

16.8. References …………………………………………………………………………... 309

Page 4 of 312

1. Preface

1.1. Preface

Computers are one of the most fascinating machines ever built by man. They exhibit behaviour

that no other machine can imitate - they can make decisions based on external input. This decision

making ability allowed us to construct devices of unimaginable functionality just 50 years ago -

we have computers that display simulations of our physical world, that can provide immersive

fantasy worlds, and we even have computers that can simulate the behaviour of living organisms

like you or me (though that one is a lot harder).

Computers are also one of the most complex machines humanity has ever built - a modern desktop

processor has on the order of 10 billion tiny switches called “transistors”, and newer graphics cards

have closer to 20 billion transistors. These have to be organized within tenths of millionths of

centimeters of each other, and turn on and off four hundred million times faster than you can

perceive changes with your eyes. They are, in fact, so complex that humans are no longer capable

of designing new computers alone - enormous teams of people use computers to design the next

generation of computers together. This is not new - the last desktop processor to be designed

entirely by humans (with computers merely for drawing or simulation of the new processor) was

over thirty years ago.

So where does this book fit in? Well, we’re not here to teach you about modern processor design

techniques - far from it. Instead, we’re going the opposite way. We’re going to show you how a

computer works by walking you through a processor that was designed by a team of just three

people. It uses around one millionth of the transistors. It switches about a thousand times slower.

It’s made of big pieces you can assemble with your hands. It is one of the simplest and slowest

computers you will encounter in your life - it’s probably even slower than your calculator!

You may be wondering at this point - what’s the point? Why teach me about a computer that is so

much slower and less complicated than the other computers? Well, there’s a really good answer to

that actually - it’s called Turing Equivalence. Turing Equivalence is a rather complicated concept

to explain with complete precision (and I will not attempt to), but it boils down to a very simple

thing: any computer, with enough memory and time, can do anything that any other computer can

Page 5 of 312

do. This simple computer, with enough memory and time, can indeed run the newest video games

(though it would take an extraordinary amount of effort and the time needed to even launch the

game would be simple astronomical) or run the same simple programs you can write on your

personal computer. The most important thing that it means though is that if you understand how

this computer works you are know very strongly equipped to understand how every computer

works because they all have to act in a similar fashion.

We hope you enjoy. Computers are really enjoyable to tinker with, and getting them to do what

you want is a challenging but a deeply rewarding process. Don’t give up, and have fun!

Page 6 of 312

1.2. Nibble Knowledge Project Summary

The Nibble Knowledge team consists of fifteen students nearing the completion of an Engineering

degree in Software, Electrical, or Computer engineering. The main goal of the team was to design

a 4-bit educational computer kit that is aimed at revolutionizing the way Canadian population

understands and perceives computer literacy. Even though computers have become a mainstream

resource, the complexity has caused the masses to not have the drive, or adequate resources to

further improve their understanding of a computer. For that reason, this kit has been designed for

people with no prior computer architecture or programming knowledge.

The documentation outlines the methodology and design of the peripheral bus, controllers and

devices, CPU, and Software. The five peripherals are Audio Controller, Serial Communication,

IDE controller, PS/2 controller, and VGA controller. The audio controller can input and output

sound, serial communication is a standard method of communicating between computers and

peripherals, the IDE controller in a mass storage device, the PS/2 controller takes in user input, the

VGA controller can display a visual output to a monitor while the CPU, controls all these

processes. The computer uses Cute BASIC programming language, which is translated to macro

assembly language by a macro assembler.

The success in the construction of the kit has been determined by comparing the initial product

scope, with the final product scope. Technical specifications of the final product highlight the

features and degree of usability of each device/peripheral. The methods used for testing have been

described in detail to showcase how resulted were validated and success was measured. The

documentation is concluded with a list of tools, materials, supplies and costs so users of the kit are

aware of what is needed to build a 4-bit computer. All the code written for this 4-bit computer is

shown in the appendix, as well as referenced to the team GitHub account.

Since this computer kit is provided with openly accessible resources and documentation, content

can be self-taught, and users can assemble the kit using easily accessible materials. The ICT sub-

sector in Canada has approximately $160 billion in revenue, which shows there’s a large potential

for growth for people invested in this sector.

Page 7 of 312

1.3. Nibble Knowledge Project Motivation and Objectives

Project Motivation:

In the current day and age, the ability to understand how a computer works and the ability to use

a computer is crucial in almost all walks of life. All professions and businesses now include some

computer use, and as such, improving computer literacy is now a very important educational goal.

Computers are a ubiquity and a necessity in the modern world. However, in the Albertan secondary

education system, dedicated computer classes are a relative rarity, even though interest in

computers is at an all-time high. Countries such as the UK and China have successfully pushed

ahead with dedicated computer courses to give their students an educational advantage. We wanted

to give Canada a chance to do the same. Moreover, due to globalization, the entire planet is now

interconnected and this has mainly been achieved due to the advancements in computer

technologies. Continuously, more and more jobs are being created in the fields related to

computers, and thus learning how a computer works is highly valuable. It is common knowledge

that a computer is a very complicated instrument and we realized that younger students (High

School and early post-secondary) do not understand the technical details of a computer. With these

ideas in mind, we decided to build a platform that could be used to teach or learn about processors.

We came across many platforms such as Raspberry Pi, Arduino and BeagleBone Black, which

have already been designed and marketed for a similar purpose. However, we realized that one

may purchase any of the above or similar platforms, but none of the platforms describe how one

can actually build a CPU. This is how our project motivation originated. From an educational

standpoint, we wanted to create a complete package that would teach a person the internal

functionalities of a CPU, all the way up to interfacing with Peripherals and basic programming.

The project objective is to create a platform that would teach an individual how to make a simple

computer. The problem we are attempting to solve is that no computer kit is available on the market

that actually allows students to delve into the inner workings of the hardware, and thus there is a

knowledge gap when it comes to understanding computer functionality from an educational

perspective. We aim to create a product that fills this market niche. Our objective is to design a 4-

bit computer system package (kit) that comprises of discrete logic components on breadboards,

along with an operating system, a compiler, and associated documentation for all components

describing exactly how all the circuits and code works. All the circuit diagrams, programming

Page 8 of 312

code, and documentation will be available online as open source for free; allowing anyone to

understand and develop the system. Furthermore, this allows the Internet community to naturally

help develop the system and help translate the components into more natural languages. The

computer will be compatible with peripherals such as Serial Communication, IDE Hard Drives,

PS/2 Keyboards, VGA Monitors, and will also have an audio output. The two main sellable

components would be the kit itself (which is assembled, tested, then packaged and sold) and hard

copies of the documentation.

Page 9 of 312

1.4. Acknowledgments

First and foremost, we thank the University of Calgary and the Schulich School of Engineering for

developing and having a wonderful Department of Electrical and Computer Engineering. Along

with that, we thank Dr. Denis Onen and Dr. Steven Norman of the University of Calgary, for their

incredible support as Academic Advisors for the Nibble Knowledge Project team. Their advice,

suggestions, their technical assistance and their belief in our team have made this project a success,

and hence, this textbook possible.

Furthermore, we thank the magnificent Technicians in the Electrical and Computer engineering

department, without whom, this project would not have manifested. We thank Warren. F, Richard.

G, Garwin. H, Andrew Michael. L, John. S, Christopher. S and Rob. T for their help and assistance

throughout the project. The technician’s combined experience of over 100 years is engrained in

this project. The Technicians also made it possible to acquire and use all the necessary tools at the

team’s convenience. We sincerely thank you all.

We also appreciate the course coordinator of the project course in the Department of Electrical and

Computer engineering, Dr. Hamidreza Zareipour and the Teaching Assistant Mark Li, for their

continuous efforts, support and understanding throughout the year.

Page 10 of 312

2. Introduction to Computers

2.1. Overview of Computer Organization

How would you describe a computer to someone? A software engineering might begin to describe

a computer from a software perspective, while, an electrical engineering might being to explain it

from a hardware perspective. Let’s look at the simplest definition of a computer. In simple terms,

a computer is a machine that performs tasks and calculations based off a set of instructions, or

program operations. Electronic computers were introduced in the 1940s and they were huge

machines that actually required a team of individuals to operate. The first computer was invented

by an English Mechanical Engineer and polymath in the early 19th century. Charles Babbage,

originated the concept of a programmable computer. Considered the "father of the computer", he

conceptualized and invented the first mechanical computer in the early 19th century.

Figure 2.1.1: Charles Babbage (1791-1871)

After working on his revolutionary difference engine, designed to aid in navigational calculations,

in 1833, he realized that a much more general design, an Analytical Engine, was possible. The

input of programs and data was to be provided to the machine via punched cards, a method being

used at the time to direct mechanical looms such as the Jacquard loom. For output, the machine

would have a printer, a curve plotter and a bell. The machine would also be able to punch numbers

onto cards to be read in later. The Engine incorporated an arithmetic logic unit, control flow in the

form of conditional branching and loops, and integrated memory, making it the first design for a

general-purpose computer that could be described in modern terms as Turing-complete.

Page 11 of 312

In contrast to early computer systems, today's computers are vastly smaller and amazingly

powerful. Not only are they thousands of times faster but they are small enough to fit on your desk,

on your lap, or even in a pocket.

In a nutshell, computers work through an interaction of physical hardware components and

software instructions. Hardware is the actual physical parts of a computer that you can see with

your eyes or touch with your hands. Software is basically a collection of code that makes up a

computer program. The hardware in turn carries out instructions by a computer program on a

complex level using electricity. Other hardware items such as a monitor, keyboard, mouse, printer,

video card, sound card, or other physical piece are often called hardware devices or even just

devices for short. When looking at software, it is the actual instructions, or programs, that tell the

hardware components what to do. Without software the hardware is essentially useless. A

computer game, word processing program, or Internet browser are some common types of

computer software.

The most important piece of software for a computer system is the operating system. It is

responsible for managing the entire computer and all the devices connected to it. Popular operating

systems include Windows XP, Windows Vista, Mac OSX, and Linux among others that you might

be familiar with.

A computer is organized in four main sections. These sections are the Central Processing Unit

(CPU), the Memory, Input Devices and Output Devices.

The Central Processing Unit (CPU) is where the decisions are made. It takes cares of all the

computations and the input/output requests are handled.

The Memory is what stores the information being processed by the CPU. More on this later.

The Input Devices, such as your PS/2 Keyboard, allows users to provide information to the

computer, while, the Output Devices, such as an Audio Speaker, allows users to receive

Page 12 of 312

information from the computer, in this case, in the form of a pleasant sound, hopefully. Below is

a figure that illustrates the interactions between the four sections of the computer.

Figure 2.1.2: Different components of the computer

CPU

In simple terms, the CPU is the brains of the computer. It has a unit called the Arithmetic Logic

Unit (ALU) that performs all the arithmetic calculations. The arithmetic calculations are of the

binary number system, which is discussed in details in the next section. A Control Unit within the

CPU decodes and executes instructions that are supplied to the CPU by the software. A detailed

look into the CPU is provided in Chapter 7 of the textbook.

The Program Counter (PC), holds the memory address of the instruction. The Control Unit fetches

the instruction that the program counter is pointing at, then the program counter gets incremented

and the instruction that was fetched gets executed. This cycle repeats as per the demands of the

software.

The Input and Output Devices

The input and output devices allow the computer to perform tasks that the user of the computer

likes. The input and output devices receive information for processing, store necessary information

and return the results of processing. Most commonly used devices are the Monitor, Speakers,

Mouse, Keyboard, Printers and etc.

Page 13 of 312

Below is a diagram that illustrates the connections between the CPU, the memory and the

input/output (I/O) devices.

Figure 2.1.3: The CPU connected with memory and I/O devices

Software

The above information brings us to the Software aspect of a computer. First, let’s look at the history

of software development.

First programming languages

The first programming languages that were designed to communicate instructions to a computer

were written in the 1950s. An early high-level programming language designed for a computer

was Plankalkül, which was developed by the Germans for the functional program controlled

Turing-complete Z3 by Konrad Zuse between 1943 and 1945. However, it was not implemented

until 1998 and 2000.

Page 14 of 312

Figure 2.1.4: Konrad Zuse (1910-1995)

Short Code

John Mauchly developed the first Short Code in 1949, which was one of the first high-level

languages ever developed for an electronic computer. Unlike Machine Code (section 2.4), Short

Code statements represented mathematical expressions in understandable form. However, the

program had to be translated into machine code every time it ran, making the process much slower

than running the equivalent machine code.

Auto code

Auto Code is a programming language used by a compiler to automatically convert the language

into machine code. The first code and compiler was developed in 1952 for the Mark 1 computer

at the University of Manchester and is considered to be the first compiled high-level programming

language.

The first major languages

In 1957, the first of the major languages appeared in the form of FORTRAN. Its name stands for

Formula Translating system. The language was designed at IBM for scientific computing. The

components were very simple, and provided the programmer with low-level access to the

computers insides.

Page 15 of 312

Algol

The Algol language was created by a committee for scientific use in 1958. It’s major contribution

is being the root of the tree that has led to such languages as Pascal, C, C++, and Java. It was also

the first language with a formal grammar.

Now, that a little bit of software history is covered, let’s consider the application of software. There

are two main types of software: Application software and System Software.

Application Software

Application software consists of programs designed to perform specific tasks that are visible to the

user. It is due to this type of software that the use of computers has become so popular. Most

common application software are word processing like Microsoft Word, spreadsheets like

Microsoft Excel, drawing programs, publishing programs and presentation programs like

Microsoft PowerPoint to name a few.

System Software

System software consists of programs that support the execution and development of other

programs. They two major types are Translation Systems and Operating Systems.

Translation system are set of programs used to develop software. As the names states, the key

factor in translation system is the translator, which could be a compiler or liner for instance. A

compiler converts one language to another, while a linker combines resources. An example of this

is the Microsoft Visual C++. The compliers and linkers work towards editing, compiling, linking

object and library files, loading, executing and observing how a program reacts. The compilation

process of the Nibble Knowledge Computer Cute BASIC language is as follows.

Page 16 of 312

Figure 2.1.5: Compilation process for Cute BASIC

The operating system controls and manages the computational resources of the computer. Some

examples of operating systems are UNIX, Mac OS X and Windows. Operating systems provide

file systems which consist of directories, folder and files. Moreover, operating systems manage

the programs that are running on the computer along with managing how the computer interacts

with the I/O devices. More on operating systems in section 2.2 below.

Page 17 of 312

2.2. Operating Systems – A High Level Introduction

Computers are a part of almost every application, so a discussion on operating systems continues

to teach the fundamental building blocks of a computer. In fact, operating systems are a crucial

part of any computing system.

An operating system is a software program that manages computer hardware. It is essentially an

intermediary between the user of a computer and the computer hardware. The main purpose of an

operating system is to provide a user-friendly environment where programs can be executed in a

convenient and efficient manner.

Figure 2.2.1: Overview of a Computer

Even though the operating system is designed to manage/control actions of the hardware;

alternatively, hardware must also provide the needed mechanisms to allow and ensure appropriate

computer system operation. The hardware must disable user programs from interfering with the

needed operation of the system.

Due to the complexity of the tasks an operating system has to perform, it is vital that it is created

in bits. Each section should be defined in detail in terms of functions, inputs and outputs. The

detailed definitions of the system form the basis of choices amongst various strategies and

algorithms. This allows each piece to be a proper delineated section of the system. The internal

structure of an operating system varies greatly since it is organized along various lines. This proves

designing an operating system is a huge task.

Page 18 of 312

Operating System Performance

Figure 2.2.2: Operating System Components

As shown above, a computer system can be split into four components. The hardware is composed

of the CPU, memory and I/O devices. The operating system acts as the controlling element

between the hardware, and all the applications in a computer. The operating system can be split

into the user and system perspective.

From a User Perspective

The view of the user changes in accordance with the computer interface being used. For example,

the operating system designed for a personal computer would be something aimed towards easy

usage, and moderate performance levels. In some cases, users even sit at a terminal connected to

a mainframe or minicomputer. For this situation, the operating system is designed to maximize

resource utilization. Operating systems for embedded computers are designed to run with no user

interruptions. It is evident that certain features of an operating system are enhanced based upon

the type of usage.

Page 19 of 312

From a System Perspective

From the view of the actual computer itself, as mentioned earlier, the operating system needs to

be the most involved with the actual hardware. The operating system essentially acts as a resource

allocator.

Examples of some well-known operating systems are Windows, Linux, AIX and OS/400.

Page 20 of 312

2.3. Number Systems: Decimal, Binary, Hexadecimal, and Addition, Signed Binary

Throughout your elementary, secondary and high school years, the number system that you are

accustomed to is known as the Decimal number systems. It consists of many different types of

number, such as integers, real number and so on and so forth. However, digital systems consist of

only 1’s and 0’s (ones and zeros), which are primarily referred to as Binary numbers.

Decimal Numbers

Primarily, there are ten decimal numbers or often referred to as digits: 0, 1, 2, 3... 9. These primary

decimal numbers, when joined together, form longer decimal numbers. Just as there are ten

primary decimal numbers, each column of a decimal number has ten times the weight of the

column before it. For example, the decimal number 1000, from right to the left has columns that

weigh 1, 10, 100 and 1000. Each column weighs ten times the previous column and therefore, the

decimal number system is also referred to as the base 10. What does base 10 mean? For example,

a decimal number 1234 has a one’s column, a ten’s column, a hundred’s column and a thousand’s

column from right to left respectively. Therefore, the number 1234 in base 10 can be represented

as 123410 = 1 x 103 + 2 x 102 + 3 x 101 + 4 x 100. Usually, the base is indicated by a subscript after

the number, as in 123410 for base 10. It is also worth noting that for an N digit decimal number,

there are 10N different numbers. Hence, a three digit decimal number, that is, 103, where N = 3,

there are 1000 different possibilities that range from 0 to 999. Or, the possibilities range from 0 to

10N – 1.

567810 = 5 x 103 + 6 x 102 + 7 x 101 + 8 x 100

Decimal Five thousand Six hundred 7 tens 8 ones

Example of decimal number representation

How do we represent a decimal number that has a fraction part? Consider the example below:

12.3410 = 1 x 101 + 2 x 100 . 3 x 10-1 + 4 x 10-2

Decimal One tens Two ones 3 tenths (1/10) 4 hundredths

(1/100)

In general, any decimal number, A, could be expressed as a power series representation:

A = aN 10N + aN-1 10N-1 + … + a0 100. a-1 10-1 + … + a-N+1 10-N+1 + a-N 10-N

Page 21 of 312

Everything in front of the decimal point (left of decimal point) is the integer part and everything

after the decimal point (right of decimal point) is the fractional part.

Binary Numbers

Binary numbers consists only of two digits, 0 and 1. These digits are more commonly referred to

as bits. A bit is either 0 or 1. The term Binary means composed of two pieces or two parts. Binary

numbers are base 2, where each column of binary number has twice the weight of the previous

column. In binary, the smallest weight possible is 1, which due to 20 = 1. The next number after 1

would be 2, which is twice the value of 1, after which, you would have 4, which is twice the value

of 2. From right to the left, the values of binary numbers would be 1, 2, 4, 8, 16, 32, and 64, which

represents 20, 21, 22, 23, 24, 25 and 26 respectively and so on. As stated above, the bits 0 and 1 could

be combined to create numbers of any magnitude. For example, the number 1210 could be

expressed in binary as 10102. In the previous example, a base 10 number was converted into a base

2 number. An N-bit binary number has 2N different numbers. Hence, a three bit binary number,

that is, 23, where N = 3, has 8 different possibilities that range from 0 to 7. Or, the possibilities

range from 0 to 2N – 1.

1210 = 10102 = 1 x 23 + 0 x 22 + 1 x 21 + 1 x 20

Decimal Binary 1 eight 0 four 1 two 0 one

Decimal

Number

1 Bit Binary

Number

2 Bit Binary

Number

3 Bit Binary

Number

0 0 00 000

1 1 01 001

2 10 010

3 11 011

4 100

5 101

6 110

7 111

Table 2.3.1: Decimal Numbers and different Binary Numbers

In the above table, it can be noted that the maximum decimal number that could be represented by

a 3 bit binary number (111) is 7: 22 + 21 + 20 = 7 (4+2+1). In the case of a 4 bit binary number, the

maximum decimal number that could be represented would be 15. In binary, 1111 could be

Page 22 of 312

expressed as 23 + 22 + 21 + 20 = 15 (8+4+2+1). In other words, 24 – 1 = 15 from the possibilities

of 2N – 1.

The conversion of a decimal number to a binary number is challenging at first; however, it becomes

easy with a little bit of practice. The integer part of a decimal number could be converted to binary

using successive division by 2 and the fraction part of a decimal number could be converted to

binary using successive multiplication by 2. For Binary numbers, the successive division or

multiplication is done by 2; for a different number type, replace the division or multiplication with

the appropriate conversion system.

Example: Convert the decimal number 1410 to a binary number (base 2).

Solution: As the decimal number only has an integer part (no fractions), successive division is used

to determine the binary number. If there is a Binary number B, the solution will be of B3 B2 B1 B0

type. We proceed from the right to the left when determining the conversion.

Decimal Division Quotient Remainder Binary Value

14 ÷ 2 7 0 B0 = 0 (remainder)

7 ÷ 2 3 1 B1 = 1 (remainder)

3 ÷ 2 1 1 B2 = 1 (remainder)

1 ÷ 2 0 1 B3 = 1 (remainder)

Therefore, the binary number B = [B3 B2 B1 B0] = 11102. To verify, use the power series

summation.

11102 = 1 x 23 + 1 x 22 + 1 x 21 + 0 x 20 = 1410

Binary 1 eight 1 four 1 two 0 one Decimal

Example: Convert the fractional number 0.12510 to a binary number (base 2).

Solution: As the decimal number only has a fractional part, successive multiplication is used to

determine the binary number. If there is a Binary number B, the solution will be of B-1 B-2 B-3 B-4

type. We proceed from the left to the right when determining the conversion.

Decimal Multiplication Product Integer Binary Value

0.125 × 2 0.25 0 B-1 = 0 (integer)

0.25 × 2 0.50 0 B-2 = 0 (integer)

0.50 × 2 1.00 1 B-3 = 1 (integer)

Page 23 of 312

Therefore, the binary number B = [B-1 B-2 B-3 B-4] = 0.0012. To verify, use the power series

summation.

0.0012 = 0 x 2-1 + 0 x 2-2 + 1 x 2-3 = 0.12510

Binary 0 half (1/2) 0 quarter (1/4) 1 eighth (1/8) Decimal

It is worth mentioning here that the solution for the method of successive multiplication is

determined by first placing the decimal point. Then, the decimal number is multiplied by 2; if the

integer part of the result is even, then a zero is written after the decimal point of the binary fraction.

If the integer part of the result is odd, a one is written after the decimal point of the binary fraction.

The decimal number is again multiplied by 2, and the process is repeated as often as necessary,

until there is no longer a fraction part in the decimal number.

The process of successive multiplication could get very lengthy, for instance, the conversion of

0.110 to binary is 0.0001100110011001100110011001100110011 … Many fractional conversions

generate a lot of digits, because a lot of decimal fractions cannot be represented exactly. Do not

worry, you will not be expected to compute such fractions. The above information was shared to

give the reader an insight into binary computations.

For instance, if the decimal number 14.12510 had to be converted to binary, one would imply the

method of successive division and multiplication separately for the integer and fraction part

respectively and then bring the binary numbers together, separated by the decimal point. 14.12510

= 1110.0012.

Conversion from decimal to binary could be done in many different ways. With practice, the

conversion becomes more natural and faster. Below are some examples with alternate methods.

Example: Convert the decimal number 10010 to a binary number (base 2).

Solution: Ideally, determine closest largest 2N operation that would yield the desired decimal

number, where N is a positive whole number (N = 0, 1, 2 …). Usually, working from the left and

starting from the largest power of 2 equal to or less than number is preferred. In this case, 28 =

25610, which is too high, 27 = 12810, which is also too high. 26 = 6410, which is the closest largest

2N operation to the decimal number 10010 i.e. 64 < 100. To determine the next number, take the

Page 24 of 312

remainder, which is 100 – 64 = 36 and compare it with the next smaller binary number than 26,

which is 25 = 32. The sum of 64 + 32 = 96, which is less than 100 i.e. 96 < 100. Therefore, 25 is

the next binary digit (the next 1 or high). So far, there are 2 binary digits that are high: 1 1 0 0 0 0

0, where the first two ones are 26 are 25 respectively. Now, 100 – 96 = 4. Is there a binary

computation that would result in the decimal number 4 that is of 2N magnitude? Yes, 22 = 4. In this

example, we did not check the magnitude of 24 and 23 because it was quiet obvious that both 23

and 24 are higher than 4. This results in 10010 = 64 + 32 + 4 = 26 + 25 + 22. Therefore, in binary

notation, the result is 10010 = 11001002.

11001002 = 1 x 26 + 1 x 25 + 0 x 24 + 0 x 23 + 1 x 22 + 1 x 21 + 0 x 20

Binary 1 sixty

- four

 1 thirty -

two

 0

sixteen

 0

eight

 1 four 1 two 0 one

Example of decimal to binary conversion

Example: Convert the binary number 110112 to decimal number (base 10).

Solution: Going from the right to the left, count, starting from zero, the number of digits the binary

number has. In this example, starting from the right, we have zero, one, two, three and four (OR

number of columns – 1 (5-1=4) to account for the 20 term). Now, multiply the binary digit, either

1 or 0 with the respective power of 2 term for that column. To obtain, the final decimal number,

sum all the terms.

110112 = 1 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 1 x 20 = 2710

Binary 1

sixteen

 1

eight

 0 four 1 two 1 one Decimal

Example of binary to decimal conversion

Octal Numeral System

Students do not commonly know the Octal Numeral System because binary and hexadecimal

numbers (next section) are more common. The Octal numeral system is a base 8 system, where

each column of octal number has eight times the weight of the previous column. In octal, the

smallest weight possible is 1, which due to 80 = 1. The next number after 1 would be 8, which is

eight times the value of 1, after which, you would have 64, which is eight times the value of 8.

From right to the left, the values of octal numbers would be 1, 8, 64, 512, 4096, 32786, which

represents 80, 81, 82, 83, 84, and 85 respectively and so on. For example, the number 10010 could be

Page 25 of 312

expressed in octal as 1448. That is, 1 x 82 + 4 x 81 + 4 x 80. In the previous example, a base 10

number was converted into a base 8 number. An N-decimal octal number has 8N different numbers.

Hence, a three digit octal number, that is, 83, where N = 3, has 512 different possibilities that range

from 0 to 511. Or, the possibilities range from 0 to 8N – 1.

Binary, Octal and Hexadecimal numbers are closely related because Octal and Hexadecimal are

groups of bits. An Octal digit is a group of 3 binary bits (23 = 8) and a Hexadecimal digit is a group

of 4 binary bits (24 = 16). The process of converting binary to octal or hexadecimal and vice versa

will be discussed shortly.

Example: Convert the decimal number 10010 to octal number (base 8).

Solution: As the decimal number only has an integer part (no fractions), successive division is used

to determine the octal number. If there is an octal number O, the solution will be of O3 O2 O1 O0

type. We proceed from the right to the left when determining the conversion. In the case of Binary

number, the division was conducted with the number 2 (Binary), but for octal; the decimal number

is divided by 8.

Decimal Division Quotient Remainder Binary Value

100 ÷ 8 12 4 O0 = 4 (remainder)

14 ÷ 8 1 4 O1 = 4 (remainder)

1 ÷ 8 0 1 O2 = 1 (remainder)

Therefore, the Octal number O = [O3 O2 O1 O0] = 1448. To verify, use the power series summation.

1448 = 1 x 82 + 4 x 81 + 4 x 80 = 10010

Octal 1 sixty-four 4 eights 4 ones Decimal

Converting from Octal to Decimal is quiet easy as seen above; power series summations is the

easiest way to go about it. Below is another example: Convert 1238 to a decimal number:

1238 = 1 x 82 + 2 x 81 + 3 x 80 = 8310

Octal 1 sixty-four 2 eights 3 ones Decimal

Example: Convert the octal number 1238 to a binary number (base 2).

Solution: As it was mentioned on the above page, an octal digit is a group of 3 binary bits (23 = 8).

Take each digit of the octal number 1238 and split it into three columns of binary spaces, then, fill

Page 26 of 312

those binary spaces with either 0 or 1 to equal the magnitude of the octal digit. Please refer to the

table below for the explanation:

1238 = 1 x 82 + 2 x 81 + 3 x 80 = 8310

Octal Number 1 2 3 Decimal

Empty Binary Spaces _ _ _ _ _ _ _ _ _

Spaces filled with binary

equivalent magnitude

001 010 011 = 0010100112

Binary

Drop the leading 0s 10100112 Binary

Bring everything together 1238 = 10100112 (Octal to Binary Equivalent)

In the above explanation, the leading zeros were dropped or not needed because they do not add

any value to the number.

Example: Convert the binary number 10100111002 to an octal number (base 8).

Solution: An octal digit is a group of 3 binary bits (23 = 8). Starting from the right, start grouping

the binary number into groups of three binary digits. If, at the left most point of the binary number,

a group of three bits is not possible, than add leading zeros to make the group of three bits. Please

refer to the table below for explanation:

Binary Number Binary number split into groups of 3 bits from right to the left

10100111002 1 010 011 100

Add Leading 0s 001 010 011 100

Convert to

Decimal

Equivalent

001 =

1 x 20 =

1

010 =

1 x 21 =

2

011 = 1 x 21 + 1 x 20 =

2 + 1 = 3

100 =

1 x 22 =

4

Write the

Decimal # as

Octal #

18 28 38 48

Bring

Everything

Together

10100111002 = 12348 (Binary to Octal Equivalent)

Example: Convert the octal number 12.348 to a decimal number (base 10).

Solution: The power series summation method would be the easiest method to go about solving

the example.

12.348 = 1 x 81 + 2 x 80 . 3 x 8-1 + 4 x 8-2 = 10.437510

Page 27 of 312

Octal One

eights

 Two ones 3 eighths (1/8) 4 sixty-fourths

(1/64)

 Decimal

To convert the decimal number above, 10.437510 to an octal number, one would have to use the

method of successive division to solve the integer part and the method of successive multiplication

to solve the fraction part; then, the answers from the two methods would have to be brought

together, separated by the decimal point.

Hexadecimal Numbers

Hexadecimal numbers are a group of four bits of binary numbers. A hexadecimal number

represents 16 different possibilities from 0 to 15 as 24 = 16, thus, known as base 16 numbers. They

make it easier to write lengthy binary numbers and also reduce error in writing length binary

numbers. But, how would one write in base 16 notation? There are only 0 to 9 decimal numbers,

but here there are 16 possibilities. Hexadecimal numbers use the digits 0 to 9 and letters A to F,

where letter A = 10, B = 11, C = 12, D = 13, E = 14 and F = 15 respectively to represent digits 10

to 15. In hexadecimal, the smallest weight possible is 1, which due to 160 = 1. The next number

after 1 would be 16, which is sixteen times the value of 1, after which, you would have 256, which

is sixteen times the value of 16. From right to the left, the values of hexadecimal numbers would

be 1, 16, 256, 4096, 65536 which represents 160, 161, 162, 163, 164, and 165 respectively and so

on. For example, the number 123410 could be expressed in hexadecimal as 4D216. That is, 4 x 162

+ 13 x 161 + 2 x 160. In the previous example, a base 10 number was converted into a base 16

number. An N-decimal hexadecimal number has 16N different numbers. Hence, a three digit

hexadecimal number, that is, 163, where N = 3, has 4096 different possibilities that range from 0

to 4095. Or, the possibilities range from 0 to 16N – 1.

Decimal Number Hexadecimal Digit Binary Digits

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

Page 28 of 312

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

Example: Convert the decimal number 67810 to hexadecimal number (base 16).

Solution: As the decimal number only has an integer part (no fractions), successive division is used

to determine the hexadecimal number. If there is a hexadecimal number H, the solution will be of

H3 H2 H1 H0 type. We proceed from the right to the left when determining the conversion. In the

case of Binary and Octal numbers, the division was conducted with the number 2 (Binary) and

number 8 (Octal) respectively. In the case of hexadecimal numbers, you will have to divide the

decimal by 16.

Decimal Division Quotient Remainder Binary Value

678 ÷ 16 42 6 H0 = 6 (remainder)

42 ÷ 16 2 10 = A H1 = A (remainder)

2 ÷ 16 0 2 H2 = 2 (remainder)

Therefore, the hexadecimal number H = [H3 H2 H1 H0] = 2A616. To verify, use the power series

summation.

2A616 = 2 x 162 + 10 x 161 + 6 x 60 = 67810

Hex 2 two-hundred-fifty-sixes 10 sixteen 6 ones Decimal

Converting from hexadecimal to Decimal is quiet easy as seen above; power series summations is

the easiest way to go about it. Below is another example: Convert B3C16 to a decimal number:

B3C16 = 11 x 162 + 3 x 161 + 12 x 160 = 287610

Hex 11 two-hundred-fifty-

sixes

 3 sixteen 12 ones Decimal

Example: Convert the hex number B3C16 to a binary number (base 2).

Solution: A hex (hexadecimal) digit is a group of 4 binary bits (24 = 16). Take each digit of the

hex number B3C16 and split it into four columns of binary spaces, then, fill those binary spaces

Page 29 of 312

with either 0 or 1 to equal the magnitude of the hex digit. As per hexadecimal notation, B = 1116

and C = 1216. Please refer to the table below for the explanation:

B3C16 = 11 x

162

+ 3 x

161

+ 12 x

160

= 287610

Hex Number 11 3 12 Decimal

Empty Binary Spaces _ _ _ _ _ _ _

_

 _ _ _

_

Spaces filled with binary

equivalent magnitude

1011 0011 1100 = 1011001111002

Binary

Drop the leading 0s There are no leading 0s = 1011001111002Binary

Bring everything together B3C16 = 1011001111002 (Hex to Binary Equivalent)

In the above explanation, there were no leading zeros. If there are leading zeros, then drop the

leading zeros because they do not add any value to the number.

Example: Convert the binary number 10100111002 to a hex number (base 16).

Solution: A hex digit is a group of 4 binary bits (24 = 16). Starting from the right, start grouping

the binary number into groups of four binary digits. If, at the left most point of the binary number,

a group of four bits is not possible, than add leading zeros to make the group of four bits. Please

refer to the table below for explanation:

Binary Number Binary number split into groups of 3 bits from right to the left

10100111002 10 1001 1100

Add Leading 0s 0010 1001 1100

Convert to Decimal

Equivalent

0010 =

1 x 21 = 2

1001 = 1 x 23 + 1 x 20 =

8 + 1 = 9

1100 = 1 x 23 + 1 x 22 =

8 + 4 = 12

Write the Decimal #

as Octal #

216 916 1216 = C16

Bring Everything

Together

10100111002 = 29C16 (Binary to Hexadecimal Equivalent)

Example: Convert the hex number A2.F416 to a decimal number (base 10).

Solution: The power series summation method would be the easiest method to go about solving

the example.

To convert the decimal number above, 162.95312510 to a hex number, one would have to use the

method of successive division to solve the integer part and the method of successive multiplication

Page 30 of 312

to solve the fraction part; then, the answers from the two methods would have to be brought

together, separated by the decimal point.

What are Bytes?

A group of eight bits is called a byte. The term byte is most commonly used for describing the size

in computer memories or hard drives; for example, 1 Mb (Mega byte). It represents one of 28

numbers. Two hexadecimal numbers store one byte. 1 byte is equal to 8 bits. In most computers,

1 character, e. g. “a”, is one byte. Now, the prefix mega stands for 106 and the prefix kilo stands

for 103; a kilobyte is 1024 bytes (210) and a megabyte is 1024 kilobytes (220), which is 1,048,576

byes.

What are Nibbles?

A group of four bits is called a nibble. This is similar to a hexadecimal number, a group of four.

In fact, one hexadecimal digit stores one nibble. Therefore, a hexadecimal number 4D216 is 3

nibbles. The term byte is more commonly used.

Now you know what Nibbles are; think how that relates to the name of the project, “Nibble

Knowledge”.

What are Most and Least Significant Bits?

When there are a group of bits, for example, 1101002, the right most bit is called the least

significant bit and the left most bit is called the most significant bit. For binary number 1101002,

the least significant bit is 0 (right most bit) and the most significant bit is 1 (left most bit). The

abbreviation for least significant bit is LSB and the abbreviation for most significant bit is MSB.

You may be wondering why is it important to know what LSB and MSB are? The most and least

significant bits are important in binary addition, overflow determination and many other

applications.

A2.F416 = 10 x 161 + 2 x 160 . 15 x 16-1 + 4 x 16-2 = 162.95312510

Hex Ten

sixteen

 Two

ones

 15

sixteenth

(1/16)

 4 two-hundred-

fifty-sixth

(1/256)

 Decimal

Page 31 of 312

What are unsigned binary numbers?

Unsigned binary numbers are numbers that represent only positive quantities, that is, a number

that is zero or larger in magnitude. In fact, in binary presentation, there are two types of zeros,

positive zero and negative zero (-02 and +02). Information about negative binary numbers will be

covered in the section under signed numbers.

So far, the binary numbers that have been considered have been unsigned binary numbers; from

0, 1, 2, 3 to all the way up to positive infinity.

Unsigned Binary Addition

Adding binary numbers is very similar to adding decimal numbers. For many students, binary

addition may even be easier than adding decimal numbers. In this text, for simplicity, only two

binary will be added at a time. It is also common practice to only add two binary numbers at a

time. A computer also usually adds two binary numbers at a time, but it does it very quickly.

Computers are very good at computing smaller tasks very quickly, thus, computers do extremely

well when solving complex mathematic problems. Computers run programs written by humans to

perform specific well-defined tasks; mathematical computations are easily well defined and can

be computed by a computer very efficiently.

Adding two binary numbers is very simple because there are only five distinct possibilities. Binary

bits are represented in either zero or one (0 or 1), therefore the four out of five possibilities are:

Binary

Bit

 Binary

Bit

 Carry Bit Sum Bit Together Decimal

Value

0 + 0 = 0 0 002 010

0 + 1 = 0 1 012 110

1 + 0 = 0 1 012 110

1 + 1 = 1 0 102 210

The fifth possibility is that if 1 + 1 is added, then the carry bit will be shifted to the next column

on the left, and, if, in the next column, 1 + 1 is to be added, then the summation would be 1 + 1 +

1 = 310, (carry bit + binary bit + binary bit), which has a carry bit of 1 and a sum bit of 1 as well:

Page 32 of 312

Previous

Carry

 Binary

Bit

 Binary

Bit

 Carry Bit Sum Bit Together Decimal

Value

1 + 1 + 1 = 1 1 112 310

While adding binary numbers, move from the right most columns to the left most columns, just

like adding decimal numbers.

A carry bit occurs when the summation cannot be written in one binary bit, either zero or one, and

the carry bit is placed on top of the next column on the left. For instance, adding 510 + 610 = 1110,

which cannot be fit into a single decimal digit because 1110 is larger than 910, therefore, the digit

110 in the tenth column is carried over to the column on the left. The same concept applies with

binary addition.

Example: Add two binary numbers 01112 + 01012.

Solution: Starting from the right most column, 1 + 1 = 210 = 102. The carry bit is 1 and the sum bit

is 0. For the next column on the left, add the carry bit + binary bit + binary bit: 1 + 1 + 0 = 210 =

102. Again, the carry bit is 1 and the sum bit is 0. For the next column on the left, add the carry bit

+ binary bit + binary bit: 1 + 1 + 1 = 310 = 112. Lastly, the carry bit is 1 and the sum bit is 1. For

the next column on the left, add the carry bit + binary bit + binary bit: 1 + 0 + 0 = 110 = 012. The

carry bit for the last addition is zero, and thus has no carry bit. The result is 11002. Does the result

make sense? Well convert the binary numbers to decimal numbers and verify the result. In decimal,

01112 = 710 and 01012 = 510. 710 + 510 = 1210 = 11002. The results are the same. Please refer to the

table below:

Carry Bit 0 1 1 1

Binary Bit A 0 1 1 1

Binary Bit B + 0 1 0 1

Sum 1 1 0 0

The same summation could also be displayed as:

 0111 Carry Bit

 0111 Binary # A

 +0101 Binary # B

 1100 Sum

Page 33 of 312

In the above example, we added two 4-bit numbers, or you may say we added two Nibbles together.

We know that the maximum value a nibble can hold is 11112 = 1510, but what is the summation

results a solution that is larger than 1510 or 11112? In such cases, the addition has overflown or

reaches an overflow condition. All it means is that 4-bits are not enough to represent the results

and a 5th bit is needed to write the correct solution. If the number is limited to 4-bits, than the

solution is incorrect. For unsigned binary addition, an overflow condition is determined if the carry

bit of the most significant bit (MSB) is 1. Consider the example below:

Overflow -> 1111 Carry Bit

 0111 Binary # A

 +1011 Binary # B

 0010 Sum

There is an overflow condition above because the carry bit of the most significant bit is 1, which

indicates that the number is too large to be represented in 4-bits. To verify, add the numbers in

decimal format. 01112 = 710 and 10112 = 1110; the addition of 710 + 1110 = 1810, but the result

obtained from the binary addition is 00102 = 210. It is quite obvious that solution is incorrect and

there is an overflow. If, a fifth bit were allowed, then the result would be 100102, which equals

1810 and would be the correct solution. Note again, that only 4-bits were allowed above, which

resulted in an overflow condition and an incorrect result.

What are signed binary numbers?

It is quiet useful to be able to represent both positive and negative numbers. There are two common

methods used to represent negative binary numbers: sign/magnitude method and two’s

complement. For a signed number, the size of the number must always be states, for example, a 3-

bit number or a 6-bit number, etc.

The two’s complement method is preferred over sign/magnitude because it makes binary addition

easier and the result makes sense.

In the sign/magnitude method, the most significant bit is used to represent the sign of the number,

either positive or negative, where the sign bit of 0 indicates positive and the sign bit of 1 indicates

negative number.

Page 34 of 312

Example: Convert 1210 to -1210 as 5-bit sign/magnitude number.

Solution: First, first the magnitude of the decimal number in binary and then either add 0 or 1 to

indicate the sign. 1210 = 11002 or 011002 to be more precise, however, leading zeros are usually

dropped. To convert to -1210, simple change the zero in the most significant bit to 1. This results

in 111002 = -1210.

There are a few downsides to the sign/magnitude system because there are two ways to show 0 in

the sign/magnitude system: -0 and +0. Both of these show zero and this causes problems because

there are two representations of the same number.

Also, adding sign/magnitude numbers does not work. For instance, adding 1210 + -1210 should

result in zero, or in 5-bits, 00000. But does it?

111 Carry Bit

 01100 Binary # A

 +11100 Binary # B

 101000 Sum

Clearly, the solution is incorrect. Decimal numbers 1210 + -1210, do not equal to 1010002, which

is equal to 4010. For this reason, two’s complement numbers are preferred.

Two’s Complement Numbers

Two’s complement numbers are the most commonly used numbers in the binary world to represent

signed numbers. The benefit of using two’s complement is that mathematical computation are

similar to unsigned numbers. There is only one way to write zero in two’s complement number,

which is 02, and addition works exactly the same way as unsigned binary addition. A positive

number is presented exactly the same way as unsigned binary number and a negative number has

a 1 in the most significant bit position to show the negative number. For a given binary number

size, the most positive number would have zero as the most significant bit and ones everywhere

else. For instance, a 5-bit number to have maximum positive value, the number would look like

011112 or 2N-1 – 1, where N is the number size (5 in this case). And, for a given binary number

size, the most negative number would have one as the most significant bit and zeros everywhere

Page 35 of 312

else. For instance, a 5-bit number to have maximum negative value, the number would look like

100002 or -2N-1, where N is the number size (5 in this case).

A quick method to find the two’s complement of negative decimal number, one could employ a

quick calculation of 2N - |A|, where N is the size of the binary number and |A| is the magnitude of

the negative decimal number. For example, to convert -1210 to a 5-bit two’s complement number,

simply calculate 2N - |A|, where N = 5 and |A| = 1210, which results in 25 - |12| = 2010 = 101002.

Converting a negative decimal number to two’s complement representation requires three quick

steps: first, find the binary representation of the magnitude of the negative number, secondly, invert

each bit of the number, that is, zeros become ones and ones becomes zeros; this is also known as

taking the complement of the number, hence the term two’s complement. Lastly, add 1 to the

complemented (inverted) number. Following the three steps above results in the two’s complement

representation of a negative decimal number.

Example: Convert the negative decimal number -1210 to a 5-bit two’s complement number.

Solution: To find the magnitude of the decimal number in binary, one may use successive division

or simply power series presentation if the number is small and simple. The number -1210 is simple

and the magnitude may be converted to binary quiet easily. However, let’s review the method of

successive division:

Decimal Division Quotient Remainder Binary Value

12 ÷ 2 6 0 B0 = 0 (remainder)

6 ÷ 2 3 0 B1 = 0 (remainder)

3 ÷ 2 1 1 B2 = 1 (remainder)

1 ÷ 2 0 1 B3 = 1 (remainder)

Therefore, 1210 = 011002 in binary 5-bits. This concludes step number one. Now, step number two

is to complement (invert) the each bits, which results in 100112, here, 0 became 1 (0 -> 1)and 1

became 0 (1 -> 0). Lastly, add 1 to the inverted number:

Page 36 of 312

 0011 Carry Bit

 10011 Inverted #

 + 1 Add 1

 10100 Sum

The result of the summation is the representation of the negative decimal number -1210 in to binary

two’s complement number, which is 101002. It may be noted that the result matches the solution

derived from solving 2N - |A| above.

Example: Convert the positive decimal number 1510 to a 5-bit two’s complement number.

Solution: The solution for this is very simply because it is a positive number. In two’s complement

method, a positive number is presented in the exactly the same manner as an unsigned binary

number. Again, let’s employ the method of successive division for practice:

Decimal Division Quotient Remainder Binary Value

15 ÷ 2 7 1 B0 = 1 (remainder)

7 ÷ 2 3 1 B1 = 1 (remainder)

3 ÷ 2 1 1 B2 = 1 (remainder)

1 ÷ 2 0 1 B3 = 1 (remainder)

The result is 1510 = 011112. Steps two and three are not required because this is a positive number.

Two’s Complement Addition

Adding two’s complement numbers is the same as adding unsigned binary numbers. However, the

overflow conditions will be different and will be discussed later in the section. Adding two binary

numbers is very simple because there are only five distinct possibilities, which were described in

the unsigned binary addition section.

The only extra work involved in adding two complement’s numbers is that if there is a negative

number, it has to be converted to its negative representation in two’s complement using the three

steps mention above.

Example: Add -1210 and 1510 as 5-bit two’s complement numbers.

Page 37 of 312

Solution: From the previous exercise, it is known that the binary two’s complement equivalent of

-1210 = 101002 and 1510 = 011112. Now, all that is left to do is add:

111 Carry Bit

 10100 -1210

 + 01111 1510

 00011 Sum

The 5-bit solution of the addition is 000112 = 310. Does that add up? -1210 + 1510 = 310. It is

important to note that the last carry bit or the most significant carry bit of 1 does not indicate an

overflow. In two complement’s addition, ignore the last carry bit as it may or may not indicate

whether an overflow condition has occurred or not.

In two’s complement addition, overflow never occurs when adding two numbers of opposite sign

or adding a positive and negative number. A method to recognize whether an overflow has

occurred in two’s complement addition is to look at the last two carry bits. If the last two carry bits

are the same, that is, if the last two carry bits are either ‘00’ or ‘11’, than overflow has not occurred.

If the last two carry bit are opposite, that is, if the last two carry bits are either ‘01’ or ‘10’, than

overflow has occurred. In the example above, overflow did not occur because two numbers with

opposite signs were added and the last two carry bits were the same (‘11’).

Example: Add -1010 and -1210 as 5-bit two’s complement numbers. Also, check for overflow and

explain your reasoning.

Solution: Begin by converting the two negative decimal numbers into two’s complement numbers.

Find the magnitude of the numbers in binary first, the convert to two’s complement presentation.

Decimal Division Quotient Remainder Binary Value

10 ÷ 2 5 0 B0 = 0 (remainder)

5 ÷ 2 2 1 B1 = 1 (remainder)

2 ÷ 2 1 0 B2 = 0 (remainder)

1 ÷ 2 0 1 B3 = 1 (remainder)

1010 = 010102 in 5-bits binary. Now, invert (complement) the number: 101012 and lastly, add 1:

Page 38 of 312

00001 Carry Bit

 10101 Inverted #

 + 1 Add 1

 10110 Sum

Therefore, -1010 = 101102 in two’s complement binary. Repeat the steps for -1210.

Decimal Division Quotient Remainder Binary Value

12 ÷ 2 6 0 B0 = 0 (remainder)

6 ÷ 2 3 0 B1 = 0 (remainder)

3 ÷ 2 1 1 B2 = 1 (remainder)

1 ÷ 2 0 1 B3 = 1 (remainder)

Therefore, 1210 = 011002 in binary 5-bits. This concludes step number one. Now, step number two

is to complement (invert) the each bits, which results in 100112. Lastly, add 1 to the inverted

number:

 0011 Carry Bit

 10011 Inverted #

 + 1 Add 1

 10100 Sum

Therefore, -1210 = 101002 in two’s complement binary. Now, add the 2 two’s complement numbers

together:

10100 Carry Bit

 10110 -1010

 + 10100 -1210

 01010 Sum

Page 39 of 312

 The 5-bit result of the addition -1010 + -1210 = 010102. Does the solution make sense? The solution

does not make sense because two negative numbers were added and the result is a positive number

(MSB = 0). Of course, that is not correct. The solution is a positive number 010102, if that is

converted to decimal, it equals 1010. The addition of -1010 + -1210 ≠ 1010. There is an overflow

condition here because the last two carry bit are opposite (‘10’).

If the computation had been conducted using six bits, the result would have been 1010102 = -2210,

which is the correct solution. How does 1010102 = -2210? Apply the two’s complement

conversation method; invert the bits and add 1.

1010102 inverted (complemented) = 0101012. Now add 1.

101010 Carry Bit

 010101 Inverted #

 + 1 Add 1

 010110 Sum

0101102 = 0 x 25 + 1 x 24 + 0 x 23 + 1 x 22 + 1 x 21 + 0 x 20 = 1610 + 410 + 210 = 2210. In the 6-bit

solution the most significant bit of 1010102 is 1, which means it is a negative number, this add the

negative sign to the magnitude to give -2210. Therefore, 1010102 = -2210.

Page 40 of 312

2.4. Languages: Machine, Assembly and Instruction – A High Level Introduction

We use languages to communicate with each other, likewise, computers also use their version of

language to communicate with its architecture. When programming, one is working with the

software and hardware level of the computer. The programmer is working with the computer’s

architecture. To understand the architecture of a computer, one has to study the language a

computer understands, how it executes its tasks and where it stores the information. The language

is the instruction set and the operators and operands are the ALU, registers and memory of the

computer. ALU, registers and memory are discussed in different chapters.

It is wise to study the computer’s language (Instruction Set) to understand the computer’s

architecture. To describe it as an analogy, the vocabulary is the instruction set and the words are

the instructions. Each and every single program that is running on the computer uses the same

instructions and the instruction set. A computer is faster than humans in the sense that it is capable

of conduction very simple tasks very quickly. This holds true even when complex programs are

being run in the computer. For instance, applications like Microsoft Word, Excel or PowerPoint,

which are some programs that most people familiar with get compiled down to simple instructions

via the use of macro and low-level assemblers. Most common instructions in a computer are add,

subtract, jump and no operation. It was learned in section 2.3 that the computer is binary, it only

understands 1s and 0s. Instructions that encoded as binary numbers are called Machine Language.

Computers use machine language, which consists of many 1s and 0s to decipher what to execute.

Imagine reading hundreds to thousands of 1s and 0s all the time. That is a very tedious task and

humans get very tired of reading these binary numbers to figure out what is happening or to direct

the computer to execute a specific task. Thus, the instructions to the computer are represented

symbolically, using what is called Assembly Language. The complier in the translating software

converts the symbols to binary numbers that the computer understands.

Different architectures have different assembly language. Each type of CPU will have its own

machine and assembly language. However, most architectures have common instructions such as

add, subtract and jump, which makes it easy to understand other architectures as well.

Page 41 of 312

Assembly Language

In simple terms, assembly language is the readable version of machine language that humans can

understand. The assembly language is composed of instructions that specify the operation to

perform and where to conduct that operation. An Assembler, which is program in the computer

that takes the assembly language and converts it into machine code that the computer will

understand and execute. The Nibble Knowledge Computer uses an assembly language that was

developed only for the Nibble Knowledge CPU.

Instructions

Instructions are like the words used to describe an operation. For example, if you wanted to subtract

two number, say X – Y = Z, then in English, you would say, Z equals the number that is a result

of Y being subtracted from X. In assembly language, the translation is similar.

Subtraction of X – Y = Z in Assembly Language is:

LOD addressY ; Put Y into A

NND n15 ; Negate Y

ADD n1 ; Add 1 to Negated Y (Finished Two’s Compliment)

ADD addressX ; Add X to Negated Y (X-Y)

It seems more complicated, but with practice, it is very easy to understand. One may read the

assembly into English equivalent as “put Y into memory location A, negate y from it, then compute

the binary subtraction by adding 1 to the negated Y, which is doing the Two’s Complement

(discussed in section 2.3 above), and then add X to the negated Y value. Assembly language will

be discussed in more details in chapter 5.

Page 42 of 312

2.5 Memory – A High Level Introduction

In today’s day and age, there are so many types of electronic memory that have integrated into our

lives. Almost every electronic device used today has some sort of memory. For example, cell

phones, computers, PDAs, car stereo systems, TVs, gaming consoles and so many more. This

section will focus on what computer memory looks like and what it does.

Computer Memory

Figure 2.5.1: Memory Accessed by the CPU

This diagram shows that memory is accessed by the CPU in accordance with a distinct hierarchy.

Computer speeds were drastically improved when Temporary Storage areas were introduced to

the memory hierarchy. If a CPU has to access the hard drive every time a piece of data is needed,

the computer would function very slowly. Data usually comes from an input source, or a storage

device, and gets stored in the RAM. The CPU then stores frequently accessed data in the cache,

and special instructions are maintained in the register. In general, from the time a computer is

Page 43 of 312

turned on, the CPU is constantly accessing memory. Since it is so frequently accessed, an overview

of a modern computer memory is show in the figure below.

Figure 2.5.2: Computer’s Cache, RAM and Virtual Memory and Disk Storage

The figure shows that a typical computer has level 1 and 2 caches, RAM, virtual memory, and

hard disk. It makes you wonder why so many tiers of storage is required, doesn’t it? The answer

is simple! The speed and power expected from computers today means CPUs need fast and easy

access to any amount of data to be able to maximize performance.

What does data in memory look like?

Computers represent all data in the form of numbers. For that reason, the various tiers of computer

memory need to be able to store and retrieve (read and write) numbers. Computer memory is made

up of memory cells, and each cell contains of one number. So, a memory cell can essentially be

visualized as a box that contains a single number.

Page 44 of 312

Figure 2.5.3: Memory Cell Structure

The data in a memory cell can be accessed/read infinite number of times. However, once the data

in a memory cell is modified or deleted, the old data will no longer be accessible.

A typical computer has millions of memory cells, and every memory cell has a distinct “name,”

which is commonly known as the address. Different notations are adapted when talking about a

memory cell address, and the data in a memory cell. This will become clearer once assembly

language is introduced.

It is often confusing to visualize how letters, and special characters are stored as numbers. In

general, CPUs use what’s called the ASCII character set table.

Page 45 of 312

Figure 2.5.4: ASCII Character Set table

Every character is converted to a number using the table shown in the figure above. Similarly, text

and sound is converted into a sequence of numbers. Images are also converted to a sequence of

numbers, but each number corresponds to a pixel, which represents a small part of a picture. So, a

sequence of these numbers would display an entire picture.

Page 46 of 312

3. Combinational and Sequential Logic

3.1. Logic Gates

3.1.1 Introduction

At the simplest level, a logic gate is a device that executes a logical operation on two or more

inputs to produce one logical output. However, in order to have an understanding of logic gates

one must first have an understanding these logical operations and the arithmetic behind them.

These logical operations were invented the mid 1800’s by George Boole then refined and perfected

the late 19th century until it reached what we know today as Boolean Algebra.

In Boolean algebra, there are only two different values either True or False represented in binary

as “1” and “0” respectively. These values are used to execute logical operations of which the

solutions are organized into what is called a Truth Table, which will show every possible

combination of inputs and the given output of that operation. An example of a truth table is shown

in the table below.

Input A Input B Output Y

0 0 0

0 1 1

1 0 1

1 1 0

Table 3.1.1: An example of a truth table

Logic Gate: A device that executes a logical operation, on two or more inputs to produce one

logical output.

3.1.2 Basic Logic Gates

In Boolean algebra, there are three basic operations or “gates” that can be used either by themselves

or in complex Boolean expressions to get a desired truth table. However, let’s start with an

overview of each of the basic gates, their symbols, and how they operate.

Symbols Meaning

* AND

+ OR

‘ NOT

⊕ XOR

Table 3.1.2: Boolean symbols and their meanings

Page 47 of 312

NOT Gate

The NOT gate is the most simple logic gate to understand. It takes a single input and simply inverts

or switches the value of the input to the opposite value. For example, if the input of the gate is a

“1” the output of the gate is now “0”.

Figure 3.1.1: NOT Gate Symbol and Equation

Input A Output Y

0 1

1 0

Table 3.1.3: NOT Gate Truth Table

AND Gate

The AND gate takes two or more inputs and compares their values. If all of the inputs are true the

output will also be true otherwise, the result is false. Therefore, the output of the gate can only be

1 if all of the inputs are 1.

Figure 3.1.2: AND Gate Symbol and Equation

Input A Input B Output Y

0 0 0

0 1 0

1 0 0

1 1 1

Table 3.1.4: AND Gate Truth Table

Page 48 of 312

OR Gate

The OR gate also takes two or more inputs and compares their values. Unlike the AND gate

however, the output of an OR gate is true if any of the inputs are true no matter what the remaining

input values are. In other words if any one of the inputs is a 1, the output is also 1.

Figure 3.1.3: OR Gate Symbol and Equation

Input A Input B Output Y

0 0 0

0 1 1

1 0 1

1 1 1

Table 3.1.5: OR Gate Truth Table

3.1.3 Complex Basic Logic Gates

While slightly more complex than the first three gates, these four gates are still considered to be

part of the basic building blocks that make up Boolean algebra.

NAND and NOR Gates

These two gates are very important, as you will see in a later section. These gates are made by

taking an ordinary AND or OR gate and inverting the output with a NOT gate to get an inverted

truth table. Although locally you’d assume these gates more complex than AND’s, OR’s and

NOT’s the truth is actually the opposite in hardware. NAND’s and NOR’s in hardware are in fact

simpler and are considered the building blocks of all other gates.

Page 49 of 312

NAND Gate: Created by taking an AND gate and inverting the output with a NOT gate

Figure 3.1.4: NAND Gate Symbol and Equation

Input A Input B Output Y

0 0 1

0 1 1

1 0 1

1 1 0

Table 3.1.6: NAND Gate Truth Table

NOR Gate: Created by taking an OR gate and inverting the output with a NOT gate

Figure 3.1.5: NOR Gate Symbol and Equation

Input A Input B Output Y

0 0 1

0 1 0

1 0 0

1 1 0

Table 3.1.7: NAND Gate Truth Table

Page 50 of 312

Exclusive OR and Exclusive NOR

Last, but definitely not least, of the basic logic gates are the exclusive OR and exclusive NOR,

shortened to XOR and XNOR respectively. The XOR gate takes two or more inputs and compares

their values. An XOR gate’s output is similar to a normal OR except for the output becomes false

if all of the inputs are true at the same time. The XNOR gate just adds a NOT gate on top of this

causing the gate to only be true if the inputs are either all 0’s or all 1’s.

XOR Gate: Similar to an OR gate except the output is false if all the inputs are true.

Figure 3.1.6: XOR Gate Symbol and Equation

Input A Input B Output Y

0 0 0

0 1 1

1 0 1

1 1 0

Table 3.1.8: XOR Gate Truth Table

XNOR Gate: Created by taking an XOR gate and adding a NOT gate. Output is true if inputs are

either all true or all false

Page 51 of 312

Figure 3.1.7: XNOR Gate Symbol and Equation

Input A Input B Output Y

0 0 1

0 1 0

1 0 0

1 1 1

Table 3.1.9: XNOR Gate Truth Table

3.1.4 Universal Gates

NAND gates and NOR gates are known as Universal Gates. This means that using only NAND’s,

for example, you can achieve the functionality of any other gate. NAND’s are the preferred

universal gates, as they require less area to implement and have a shorter propagation delay

Logic

Expression

Expression Implementation

NAND Implementation

NOT

𝐴′ = (𝐴 ∗ 𝐴)′

OR

𝐴 + 𝐵 = ((𝐴 ∗ 𝐴)′ ∗ (𝐵 ∗ 𝐵)′)′

Page 52 of 312

AND

𝐴 ∗ 𝐵 = ((𝐴 ∗ 𝐵)′ ∗ (𝐴 ∗ 𝐵)′)′

 XOR

(𝐴 ⊕ 𝐵) = (𝐴 + 𝐵) ∗ (𝐴 ∗ 𝐵)′

= (((𝐴 ∗ 𝐵)′ ∗ 𝐴)′ ∗ ((𝐴 ∗ 𝐵)′
∗ 𝐵)′)′

Table 3.1.10: Universal NAND Gate Interpretations

The Nibble Knowledge CPU, for example, makes use of this and has only a NAND gate to execute

all logical operations.

Page 53 of 312

3.2. Boolean Algebra and Equations

3.2.1 Boolean Algebra

Just like the algebra that students have learned helps to simplify mathematical expression, Boolean

algebra helps to simplify Boolean expressions. The term Boolean originated from the work of

George Boole who introduced binary variables and the fundamental logic operations of Not, OR

and AND. Boolean means either true or false, or 1 or 0. Just like mathematics, Boolean algebra is

based on postulates that are assumed to be correct. A postulate is also known as Axiom. An axiom

is defined as a statement that is highly evident and well established that it is accepted as being true

universally without controversy. For example, 1 x 0 = 0, it is accepted as being true. In the case of

Axioms, Axioms might be not provable, but are accepted as being correct. Inherently, Boolean

axioms are based on the three most basic Boolean expressions: NOT, AND & OR. Below are the

eight most common axioms:

Number Name Axiom/Postulate

1 Binary A = 0 if A ≠ 1 or A = 1 if A ≠ 0

2 NOT 0’ = 1 or 1’ = 0

3 AND 0 ο 0 = 0

4 AND 1 ο 1 = 1

5 AND 0 ο 1 = 1 ο 0 = 0

6 OR 0 + 0 = 0

7 OR 1 + 1 = 1

8 OR 1 + 0 = 0 + 1 = 1

Table 3.2.1: Boolean Equation Postulates

The first axiom, which is the binary axiom, is quiet simple to explain; a variable is 1 (high) if it is

not 0 (low) and vice versa. The second axiom states that the NOT of 1 (high) is 0 (low) and vice

versa. It is called NOT-ing a variable or taking the compliment or inverse. Axioms 3, 4 and 5 are

exactly the same as normal mathematical product expressions: 0 x 0 = 0, 1 x 1 = 1 and 0 x 1 or 1

x 0 = 0. Axioms 6, 7 and 8 all relate to the OR operation. It is easiest to understand these Axioms

if written out as a phrase. If there are two inputs, A and B, then if A is zero or B is zero, then the

output will also be zero (0 + 0 = 0). If A is one or B is one, the output would still be one.

Most Common Properties of Boolean algebra:

1. (Closure)

 A + B ∈ S and A · B ∈ S

Page 54 of 312

2. (Commutativity)

 A + B = B + A and A · B = B · A

The commutative property says that we can reverse the order of variables that are either added

together or multiplied together without changing the truth of the expression. Binary operations

AND and OR may be applied left to right or right to left.

3. (Associativity)

 (A + B) + C = A + (B + C) and (A · B) · C = A · (B · C)

The associative property says that we can associate groups of added or multiplied variables

together with parentheses without altering the truth of the equations. Given three Boolean

variables, they may be AND or, OR may be applied right to left or left to right.

4. (Distributive)

 A + (B · C) = (A + B) · (A + C) and A · (B + C) = (A · B) + (A · B)

Page 55 of 312

The distributive property that illustrating how to expand a Boolean expression formed by the

product of a sum, and in reverse shows us how terms may be factored out of Boolean sums-of-

products. Given three Boolean variables, the first AND the result of the second OR the third is the

same as the first AND the second OR the first AND the third. Also, the first OR the result of second

AND the third is the same as the first OR the second AND the result of the first OR the third.

5. (Identity)

OR: A + 0 = A A + 1 = 1 A + A = A

The first identity property says that the sum of anything and zero is the same as the original

“anything.” Second says no matter what the value of A, the sum of A and 1 will always be 1. Third

property says adding A and A together which is the same as connecting both inputs of an OR gate

to each other and activating them with the same signal. We cannot say that A + A = 2A, since a

quantity of “2” has no meaning in Boolean algebra, only 1 and 0.

 AND: (1 · A) = A (0 · A) = 0 (A · A) = A

The first identity property says that the product of anything and 1 is the same as the original

“anything.” Second says no matter what the value of A, the product of A and 0 will always be 0.

Third property says adding A and A together which is the same as connecting both inputs of an

OR gate to each other and activating them with the same signal. We cannot say that A x A = A2,

since the concept of “square” implies a quantity of 2, which has no meaning in Boolean algebra.

Page 56 of 312

6. (Complement)

 A + A’ = 1 and (A · A’) = 0

The complement property says that there must be one “1” value between any variable and its

complement, and since the sum of any Boolean quantity and 1 is 1, the sum of a variable and its

complement must be 1. Second property says that there must be one “0” value between any

variable and its complement, and since the product of any Boolean quantity and 0 is 0, the product

of a variable and its complement must be 0.

3.2.2 De Morgan’s Law

Augustus De Morgan was the 19th-century British mathematician who invented what is known as

De Morgan's laws.1

These rules are expressed as follows:

 The negation of a conjunction is the disjunction of the negations.

 The negation of a disjunction is the conjunction of the negations.

Or in algebra can be written as:

 not(A and B) = (not A) or (not B) (A*B)’ = A’+B’

 not (A or B) = (not A) and (not B) (A+B)’ = A’*B’

This is often used to simplify expressions or to translate a theoretical circuit into a hardware circuit.

3.2.3 Boolean Equations

The term Boolean originated from the work of George Boole who introduced binary variables and

the fundamental logic operations of Not, OR and AND. Boolean means either true or false, or 1 or

0. Boolean equations can be of two forms: Sum of Products form and Products of Sum form.

Before the details of Boolean equations, some basic definitions have to be discussed. For example,

a variable A (this is not the same A in hexadecimal) has an inverse, that has the notation of A’; it

is the complement of the variable. A variable by itself is called a literal. A literal could be a variable

Page 57 of 312

or a complement. Usually, a variable A is in it’s true form and the inverse is the complementary

form.

In Boolean algebra, to AND or “ANDing” means taking the product of one or more literals. For

instance, the product of variables A and B, which can be written as AB is the “ANDing” of A and

B. To OR, or “ORing” means taking the sum of one of more literals. Taking the sum of A+B is

the same as “ORing” them.

When making calculations in decimal numbers, one considers the order of operation to determine

which part of the expression to calculate first. Likewise, in the binary computations, one must also

consider the order of operation. The order of operation plays a significant role in understanding

Boolean equations. In Boolean equations, NOT has the highest precedence, followed by AND,

then OR. It is similar to decimation computation, where products are performed before

summations. For instance, if there is an expression, Y = AB + CD, then the expression could be

read as Y equals (A AND B) OR (C AND D).

Sum of Products

The term sum-of-products itself explains the meaning: taking the summation (OR) of products

(ANDs). Recalling from the previous explanation, summation is the OR function and product is

the AND function in Boolean equations. If, there is an expression, where there are more than one

product terms that result in the Boolean expression becoming TRUE (of high or 1), than those

products can be summed to give one Boolean equation. For instance, there is a circuit that has 2

inputs, A and B, and 1 output Y. If the output of the circuit is TRUE when the following conditions

are met: A is logic high and B is logic low (B’), or A is logic high and B is logic high, in other

words, AB’ or AB, the output could be written as a Boolean equation as Y = AB’ + AB. In this

case, one if summing the products or sum-of-products. Y = AB’ + AB could be written as Y equal

(A and B’) OR (A AND B). The output is logic high in these two conditions.

Page 58 of 312

Products of Sums

The Term products-of-sum itself explains the meaning: taking the product (AND) of summations

(ORs). However, there is a twist here. In the sum of products form, one has to sum product terms

that are TRUE (logic high or logic 1), however, the products-of-sums considers terms that result

in the output being FALSE. For instance, considering the same example from sum of products,

there is a circuit that has 2 inputs, A and B, and 1 output Y. If the output of the circuit is FALSE

when the following conditions are met: A is logic low (A’) or B is logic high, and A is logic low

(A’) or B is logic low (B’), in other words, A’ OR B AND A’ OR B’, the output could be written

as a Boolean equation as Y = (A + B) (A+B’). Here, (A+B) gives Y = 0 for A = 0, B= 0, also Y =

0 for A = 0, B = 1. The Key here is to find the FALSE logic.

Both the sum of products and products of sum forms are correct and equivalent, however, for most

students, the sum-of-products form is easier to use.

3.2.4 Advanced Arithmetic – Introduction

Now that we have a basic understanding of the basic gates and logic arithmetic we can begin to

use these tools to create complex logical equations to suit our needs. This is a very important

concept in digital design and is used extensively in the Nibble Knowledge computer. For an

example, let’s look at the logic in the CPU’s Control Unit that determines which phase the CPU is

in and sends out the necessary signals. It is not necessary to understand the nature of these signals

that will be discussed in later chapters for now just try to understand the arithmetic behind the

signals.

Figure 3.2.1: Control Unit of Nibble Knowledge Computer

First let’s look and the truth table for the Control Unit Decode:

ABC OP enable MEM Enable Execute PC Enable

000 0 1 0 0

Page 59 of 312

001 1 0 0 0

010 1 0 0 0

011 1 0 0 0

100 1 1 1 1

Table 3.2.2: Control Unit Decode Truth Table

Now let’s determine the equations for each phase. Looking first at the OP enable column we can

see that the output is only 0 when A, B, and C are all false this gives the equation of:

𝑂𝑃 𝑒𝑛𝑎𝑏𝑙𝑒 = 𝐴′𝐵′𝐶 + 𝐴′𝐵𝐶′ + 𝐴′𝐵𝐶 + 𝐴𝐵′𝐶′

Using the rules we learned before we can reduce this equation to something more manageable.

𝑂𝑃 𝑒𝑛𝑎𝑏𝑙𝑒 = 𝐴′(𝐵′𝐶 + 𝐵𝐶′ + 𝐵𝐶) + 𝐴𝐵′𝐶′

𝑂𝑃 𝑒𝑛𝑎𝑏𝑙𝑒 = 𝐴′(𝐶(𝐵′ + 𝐵) + 𝐵𝐶′) + 𝐴𝐵′𝐶′

𝑂𝑃𝑒𝑛𝑎𝑏𝑙𝑒 = 𝐴′(𝐶 + 𝐵𝐶′) + 𝐴𝐵′𝐶′

𝑂𝑃 𝑒𝑛𝑎𝑏𝑙𝑒 = 𝐴′((𝐶 + 𝐵)(𝐶 + 𝐶′)) + 𝐴𝐵′𝐶′

𝑂𝑃 𝑒𝑛𝑎𝑏𝑙𝑒 = 𝐴′(𝐶 + 𝐵) + 𝐴𝐵′𝐶′

𝑂𝑃 𝑒𝑛𝑎𝑏𝑙𝑒 = 𝐴′(𝐵 + 𝐶) + 𝐴(𝐵 + 𝐶)′

𝑂𝑃 𝑒𝑛𝑎𝑏𝑙𝑒 = 𝐴 + 𝐵 + 𝐶

This can easily be checked by looking at the truth table and seeing that OP enable is only false

when A, B, and C are all false.

Exercise: Try to get the other equations on your own for practice:

𝑀𝐸𝑀 𝑒𝑛𝑎𝑏𝑙𝑒 = 𝐵′(𝐴′𝐶′ + 𝐴𝐶)

𝐸𝑥𝑒𝑐𝑢𝑡𝑒 = 𝑃𝐶 𝑒𝑛𝑎𝑏𝑙𝑒 = 𝐴𝐵′𝐶

Page 60 of 312

3.3. Hardware Reduction Techniques

After you design a circuit to have the correct functionality, you then should adjust it to use less

hardware. Often this means applying De Morgan’s theorem (or Bubble pushing) to reduce the

number of different logic gates you use or to reduce the number of total gates needed to accomplish

a task. For instance, if you look at the circuit below, it can be reduced to one logic gate by using

bubble pushing.

Figure 3.3.1: Hardware Reduction due to Bubble Pushing

Bubble Pushing

Bubble pushing is a technique to apply De Morgan's theorem directly to the logic diagram.

Although the algebraic representation is used more often, Bubble pushing can be used to visually

apply De Morgan’s theorem and is used when you need to make diagrams closer represent the

gates you have available or when reducing hardware.

The bubbles on the inputs/outputs of gates shown in the figure below represent a not logic

operation on those inputs/outputs.

Page 61 of 312

Figure 3.3.2: Logic gates transformed through Bubble Pushing

Below is are examples to illustrate the theory. It is not a very practical example, however, it

illustrates the theory well. It shows how it is possible to manipulate logic by applying Bubble

Pushing and change the gates used in the circuit.

Page 62 of 312

Figure 3.3.3: Example 1 of Bubble Pushing

Page 63 of 312

Figure 3.3.4: Example 2 of Bubble Pushing

Page 64 of 312

3.4. Timing and Delays

As you have learned by now, electronic circuits rely heavily on timing. In sequential circuits, if a

signal is changing from one state to another at the same time as that signal is being read into a flip

flop many issues could arise. For this reason, we must look deeper into some theory behind timing

and delay in sequential circuits.

Propagation and Contamination Delay

There are two main types of delay that we need to worry about: propagation delay, and

contamination delay. Propagation delay is the time between the last input change, and the last

output change (input at steady state, to output at steady state), while contamination delay is the

time between the first input change, to the first output change (input is contaminated, to output is

contaminated). They are very similar, but it is important to know the difference. We will mainly

focus on propagation delay, because that is what is shown on data sheets when buying chips. These

delays are shown in a timing diagram below. The box between a, and b is a combinational logic

circuit. From Figure 3.4.2, “tcab” is the contamination delay from a to b, and “tdab” is the

propagation delay from a to b. A common propagation delay for an LS chip is 20ns (AND, OR,

NAND, NOR, gates are all this).

Figure 3.4.1: Combinational Element

Figure 3.4.2: Timing of Combinational Element

When designing a sequential circuit, it is important to make sure that the propagation delay of all

elements in-between clock elements is less than the period of the clock. For example, if there were

flip flops on either side of Figure 3.4.1, then the period of the clock must be greater than tdab. To

CL
a b

a

b

t
cab

t
dab

t1 t2 t3 t4

Page 65 of 312

add to this, if there were multiple paths between clocked elements, the longest path must be less

than the period of the clock.

Figure 3.4.3: Small Combinational Circuit

Looking at Figure 3.4.3, there are two paths through the circuit: from a/b to o, or from c to o. The

longest path is obviously from a or b through to o, so this is the one we would want to measure the

delay of.

Steps for Solving

1. Identify the clock driven elements

2. Identify all paths between clock elements, then identify the longest path

3. Calculate the delay of the longest path

4. Check that this delay is less than the clock period

Example 1

Figure 3.4.4: Circuit for example 1

Page 66 of 312

Above is the circuit we will be analyzing to determine the longest path.

Given information:

 tpdAND = 20ns, tpdNOR = 50ns

 Tclock = (clock period) = 200ns

Now let us follow the steps for solving to determine the longest delay.

1. Identify the clock driven elements.

It is quite easy in this case to find all the clock driven elements because they are the only

ones with a “CLK” input on them. You can also find them as the elements with the V shape

below “CLK”. This tells the viewer that the element is a rising edge triggered device.

There are six clock driven elements, the three with blue inputs, the two with red, and the

output one with a green output.

2. Identify all paths between clock elements, then identify the longest.

There are three possible paths that we could take through the circuit that give us different

results. The top path shown in green, the middle path shown in blue, and the bottom path

shown in red. It is important to note that the bottom path begins from a completely different

clock driven component than the other two paths. As long as a path starts and ends at a

clock component, it can be a potential longest path. The top green and black path are

identical. Looking at the delays of each gate, the top green path has the longest delay.

3. Calculate the delay of the longest path.

Using the green path, and the delays given above we can calculate the tlongest path.

tlongest path = (2 * tpdAND) + tpdNOR = 90ns

4. Check that this delay is longer than the clock period.

90ns < 200ns

The delay is well under the clock period so this circuit should have enough time to process

the combinational circuitry before the clock edge saves the output to the final flip flop on

the right of Figure 3.4.4.

Page 67 of 312

Example 2

Figure 3.4.5: Circuit for example 2

In this example the final goal is a little different. Instead of comparing to the clock period in step

4, let us find what the minimum clock period is, in order to find the maximum frequency of the

circuit.

Given information:

 tpdAND = 50ns, tpdNOR1 = 50ns (3-input NOR labeled NOR1), tpdNOR2 = 15ns, tpdOR = 15ns,

tpdNOT = 10ns

Let us again follow the steps:

1. Identify the clock driven elements.

This step is the same as in example 1, there are 6 clock driven elements.

2. Identify all paths between clock elements, then identify the longest.

There are many different paths in this example, three of them are shown in the diagram

but there is another one that starts by following the blue path, but then goes up through

the NOR. Since the delays of the OR and the NOT are identical, this path and the top

green path end up being the same.

In this problem it may be beneficial to calculate multiple paths in this step, because it

may not be obvious by just looking at the circuit.

o Green path: tgreen = tpdOR + tpdNOR2 + tpdNOR1 = 15ns + 15ns + 50ns = 80ns

Page 68 of 312

o Blue path: tblue = tpdNOT + tpdNOR1 = 10ns + 50ns = 60ns

o Red path: tred = tpdAND + tpdNOR1 = 50ns + 50ns = 100ns

In this case, the high delay on the AND gate actually made the red path the longest

even though it has fewer gates than the green.

3. Calculate the delay of the longest path.

This was already done in the previous step.

4. Check that this delay is longer than the clock period.

This time this step will be a little different. We do not know the clock period, instead

we are asked to find the maximum frequency of the circuit. Knowing that the longest

delay is 100ns, we use that as the minimum period of the clock. This gives us a

frequency of 1/100ns = 10 MHz. This number is a little unrealistic because there would

be absolutely no wriggle room, but it is the theoretical maximum frequency that the

circuit can run at.

Page 69 of 312

3.5. Multiplexer (MUX)

Multiplexer (MUX) is a combination logic circuit that selects one of multiple input signals and

directs it to a single output. A 2^N multiplexer allows you to select one output from N inputs. The

multiplexer fundamentally acts as a multiple input, single output switch, and the signals can be

either analog or digital signals.

Multiplexer is generally used in combination with de-multiplexer (DEMUX). The multiplexer is

first used to combine multiple input into a single output, which can be sent to the de-multiplexer.

The de-multiplexer receives the single stream of data and splits it into the original multiple signals.

In this case, using the multiplexer and de-multiplexer greatly reduced the amount of channels

required to send the data. Instead of requiring N channels to send the data, by using 2^N

multiplexer and de-multiplexer, only one channel is required.

Common size of Multiplexer are 2-to-1, 4-to-1, 8-to-1 and 16-to-1. Since digital logic uses binary

values, powers of 2 are used (4, 8, and 16) to maximally control a number of inputs for the given

number of selector inputs.

2-to-1 Multiplexer

 𝑌 = 𝑋0𝐶̅ + 𝑋1𝐶

Figure 3.5.1: 2:1 Multiplexer

Page 70 of 312

Input Select Output

𝑋0 𝑋1 C 𝑌0 Y

0 0 0 0 𝑋0

0 0 1 0 𝑋1

0 1 0 0 𝑋0

0 1 1 1 𝑋1

1 0 0 1 𝑋0

1 0 1 0 𝑋1

1 1 0 1 𝑋0

1 1 1 1 𝑋1

Table 3.5.1: Truth Table of 2:1 Multiplexer

Figure 3.5.2: Circuit Diagram of the 2:1 Multiplexer

4-to-1 Multiplexer

 Y = 𝑋0𝐶1
̅̅ ̅𝐶0

̅̅ ̅ + 𝑋1𝐶1
̅̅ ̅𝐶0 + 𝑋2𝐶1𝐶0

̅̅ ̅ + 𝑋3𝐶1𝐶0

Page 71 of 312

Figure 3.5.3: 4:1 Multiplexer

Select Data Input Output

𝐶1 𝐶0 Y

0 0 𝑋0

0 1 𝑋1

1 0 𝑋2

1 1 𝑋3

Table 3.5.2: Truth Table of 4:1 Multiplexer

Figure 3.5.4: Circuit Diagram of 4:1 Multiplexer

Page 72 of 312

This truth table and diagram shows when both select input equal to 0 then output Y=X_0 when

both select input equal to 1 then output Y=X_3. When select input C_1=0, C_0=1 then output

Y=X_1, and when select input C_1=1, C_0=0 then output Y=X_2.

There is an alternative way to implement a 4-to-1 Mux is using three 2-to1 Mux. In addition, this

scenario works for 8-to-1 Mux and 16-to-1.

Special case: 4-to-1 Mux from 2-to-1 Mux

Figure 3.5.5: Special Case of the 4:1 Multiplexer

8-to-1 Multiplexer

Y = 𝐶2
̅̅ ̅𝐶1

̅̅ ̅𝐶0
̅̅ ̅𝑋0 + 𝐶2

̅̅ ̅𝐶1
̅̅ ̅𝐶0𝑋1 + 𝐶2

̅̅ ̅𝐶1𝐶0
̅̅ ̅𝑋2 + 𝐶2

̅̅ ̅𝐶1𝐶0𝑋3 + 𝐶2𝐶1
̅̅ ̅𝐶0

̅̅ ̅𝑋4 + 𝐶2𝐶1
̅̅ ̅𝐶0𝑋5 + 𝐶2𝐶1𝐶0

̅̅ ̅𝑋6

+ 𝐶2𝐶1𝐶0𝑋7

Figure 3.5.6: 8:1 Multiplexer

Page 73 of 312

Select Data Input Output

𝐶2 𝐶1 𝐶0 Y

0 0 0 𝑋0

0 0 1 𝑋1

0 1 0 𝑋2

0 1 1 𝑋3

1 0 0 𝑋4

1 0 1 𝑋5

1 1 0 𝑋6

1 1 1 𝑋7

Table 3.5.3: Truth Table of 8:1 Multiplexer

Page 74 of 312

Figure 3.5.7: Circuit Diagram of 8:1 Multiplexer

This truth table and diagram shows when all select input equal to 0 then output Y=X_0 when all

select input equal to 1 then output Y=X_7. When select input C_2=0, C_1=0, C_0=1 then output

Y=X_1, when select input C_2=0, C_1=1, C_0=0 then output Y=X_2, when select input C_2=0,

C_1=1, C_0=1 then output Y=X_3, when select input C_2=1, C_1=0, C_0=0 then output Y=X_4,

when select input C_2=1, C_1=0, C_0=1 then output Y=X_5, and when select input C_2=1,

C_1=1, C_0=0 then output Y=X_6.

There are many advantages to using a multiplexer. It can be used to increase the amount of data

that can be sent within a fixed time or bandwidth. In addition, multiplexer reduces the number of

wires required in a system, which in turn lowers the complexity of the circuit and the cost.

Page 75 of 312

3.6. Flip-Flops and Latches

Flip flop and latch are the basic building block of the sequential logic circuit, they are two state

(Set/Reset) synchronous device with feedback path that can be used to store one bit of data. The

primary difference between flip flop and latch is that flip flop is edge triggered and latch is pulse

triggered. This means the flip flop output changes only during the brief instances where the clock

input changes from high to low or low to high. The latch checks all its inputs continuously and

change its output according to input at any period of time. Latches are generally faster, which

makes them useful for high speed designs. In addition, since they’re pulse triggered, they require

less power. However, latches are less predictable, which makes it harder for designer to perform

timing analysis. The advantage of using flip flop is that it helps the circuit designer to maintain

better control over the timing in the circuit and perform accurate timing analysis.

Figure 3.6.1: Block Diagram of a Flip-Flop or a Latch

From the above figure:

Q=1 is the SET state

Q=0 is the RESET state

Flip flop and latches normally have 2 complementary outputs which usually donated as Q and Q’.

S-R Latch

SR latch can be created with two NOR gates that have a cross-feedback loop.

Figure 3.6.2: Circuit Diagram of S-R Latch

Page 76 of 312

Figure 3.6.3: Block Diagram and Truth Table of S-R Latch

When a high is applied to the Set line of an SR latch, the Q output goes high (and Q low). The

feedback mechanism, however, means that the Q output will remain high, even when the S input

goes low again. This is how the latch serves as a memory device. SR latches can also be made

from NAND gates, but the inputs are swapped and negated.

D Latch (transparent latch)

A D latch is like an S-R latch with only one input: the “D” input. Activating the D input sets the

circuit, and de-activating the D input resets the circuit.

Figure 3.6.4: Circuit Diagram of the D Latch

Figure 3.6.5: Block Diagram and Truth Table of the D Latch

Page 77 of 312

The D latch is used to capture, or 'latch' the logic level which is present on the Data line when the

clock input is high. If the data on the D line changes state while the clock pulse is high, then the

output, Q, follows the input, D. When the CLK input falls to logic 0, the last state of the D input

is trapped and held in the latch.

Figure 3.6.6: Timing Diagram of the D Latch

D Flip-Flop

A D flip-flop, known as a data or delay flip-flop, captures a value and only propagates it on a rising

clock edge. A rising edge is when a value goes from a 0 logic level to a 1 logic level.

The working of D flip flop is similar to the D latch except that the output of D Flip Flop takes the

state of the D input at the moment of a positive edge at the clock pin (or negative edge if the clock

input is active low) and delays it by one clock cycle. That's why, it is commonly known as a delay

flip flop. The D Flip Flop can be interpreted as a delay line or zero order hold.

Figure 3.6.7: Block Diagram of the D Flip-Flop

Page 78 of 312

Clock D Q

Rising edge 0 0

Rising edge 1 1

Non-Rising X Q

Table 3.6.1: D Flip-Flop Truth Table

Table 3.6.1 shows that on a rising edge the inputs propagated to the output but when there isn’t a

rising edge the output remains at the last value that was propagated.

Note: An X is known as a “don’t care” symbol showing that the result doesn’t change whether this

value is a 1 or a 0.

Figure 3.6.8: Timing Diagram of the D Flip-Flop

Although there are many clock driven devices the DFF is the simplest and often a building block

for other clock driven devices such as a register. The advantage of the D flip-flop over the D-type

"transparent latch" is that the signal on the D input pin is captured the moment the flip-flop is

clocked, and subsequent changes on the D input will be ignored until the next clock event.

Figure 3.6.9: Circuit Diagram of the D Flip-Flop

Page 79 of 312

4. Arithmetic Circuits

4.1. Addition

Adders in digital circuits take two binary numbers as inputs to the circuit and produce the sum of

the two numbers as the output with the addition of a carry if necessary. These circuits have are

essential in most digital logic circuits and have a wide variety of used including subtraction,

multiplication, division, as well as its main purpose of adding two numbers together.

In the Nibble Knowledge CPU there are two adders in the hardware. The first one is located in the

ALU and is used in the add instruction more abstractly through multiple instructions it also allows

the CPU to do all other forms of arithmetic as mentioned above. The second adder is located in

the program counter loop. This adder has the single purpose of adding 1 to the address held in the

PC register. This means that one input of the adder is always set to 1 while the other is set to the

program counter address.

4.1.1 The Half Adder

A half adder is also known as a binary adder, it adds together two or more 1-bit binary numbers.

A half adder has two inputs (A and B) and two outputs (Sum and Carry out). The half adder is

incomplete in the sense that it does not do anything with the carry, as such if the input to the half

adder has a carry it will be neglected and will add only the A and B bits. As such, the arithmetic

operations are incomplete for half adders. First let us take a basic look at how a binary adder works

at the most basic level the 1-bit half adder. This is the addition of two bits together to produce a

single output (the sum) with a carry out signal. The truth table for this is shown in the table below.

Inputs Outputs

A B Cout Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Table 4.1.1: Truth Table for a Half Adder

The half adder generates the following Boolean expression:

Cout = A * B

Sum = (A’ * B) + (A * B’)

Page 80 of 312

Using this truth table we can see that the sum is only true when either A or B are true but false

when they are both true. The carry out signal however is only true when A and B are both true.

Using this logic we get the following logic diagram.

Figure 4.1.1: Circuit Diagram of the 1-Bit Half Adder

Where the inputs A and B are send into an XOR gate to produce the sum output and into a AND

gate to produce the carry out signal. The 1-Bit Half Adder circuit could be further broken down

into the following circuit.

Figure 4.1.2: Complete Half Adder Circuit

4.1.2 The Full Adder

The difference between a full adder and half adder is that a full adder had three inputs instead of

just two. There inputs are 1-bit data A, 1-bit data B, and a Carry-in. The carry-in allows the adder

to receive the carry from a previous stage. Now that we have looked at the basic building block of

an adder with the half adder we will now take a look at the full adder which expands the half adder

to also have a carry into the adder. This creates a general block that as we will see later can be

Page 81 of 312

cascaded to create bigger adders. The truth table and the logic diagram for a full adder are shown

in the figures below.

Inputs Outputs

A B Cin Result Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 4.1.2: Truth Table for the Full Adder

We then need to simplify the full Adder’s truth table to determine the logic gates need for the full

adders design. So, we convert the above truth table into a logical expression. Let’s start by

separating the table based on the Cout value.

Cout = 1

A B Cin

0 1 1

1 0 1

1 1 0

1 1 1

Table 4.1.3: Values for inputs A, B and Cin when Carry Out is a 1

Next we take this simplified table and generate a logical expression for the Carry Out component

of the full adder.

Cout = (B * Cin) + (A * Cin) + (A * B) + (A * B * Cin)

If the last term is true, (A * B * Cin) = 1, then all the other terms must also be true as such the last

term can be eliminated as it is redundant.

Cout = (B * Cin) + (A * Cin) + (A * B)

From this expression we can design the adder component that generates the Cout output signal.

Page 82 of 312

Figure 4.1.3: Circuit Diagram of the Full Adder

As you can see in the figure a full adder consists of the cascading of two half adders. The first one

adds the two bit to be added together and generates the sum and necessary sum and carry out bits.

The sum of the first adder is then added to the carry in signal of the full adder in the second half

adder block. This second half adder generates the final sum of the full adder. The carry outs of the

two half adders are then sent into an OR gate to generate the carry out for the full adder.

Now that we know what it takes to make a full adder we can put it into a black box that has 3

inputs of input A, input B, and carry in, and 2 outputs of sum, and carry out as shown in the figure

below.

Figure 4.1.4: Full Adder Black Box

Sum = (A * B * Cin’) + (A’ * B * Cin’) + (A’ * B’ * Cin) + (A * B * Cin)

Exercise: Confirm the Boolean expression for the Result output signal.

Exercise: Design the Sum component of the full-adder using the appropriate logic gates.

4.1.3 The Ripple-Carry Adder

Using the block above, we can now cascade the adder together to create adders that can handle as

many bits as necessary for the application required. This is done by connecting the carry out of the

previous bit’s full adder into the carry in of the next full adder as shown in the diagram below.

This is known as a ripple carry counter. The ripple carry adder allows you to add two n-bit

Page 83 of 312

numbers. To construct a ripple carry adder we use half and full adders and add them one at a time.

However, it is possible to generate a ripple carry adder using only full adders.

An n-bit ripple carry adder connects the carry out of the less significant bit to the carry in of the

most significant bit and cascades down until it reaches the last, nth, full adder. Below is an example

of a 4-Bit Ripple Carry Adder

Figure 4.1.5: A 4-Bit Ripple Carry Adder

The Ripple Carry Adder is not limited to any specific number of bits. It is possible to add as many

bits as possible.

Figure 4.1.6: Example of larger Ripple Carry Adder

Page 84 of 312

Using this method however can have drawbacks however. Since each carry in depends on the carry

out of previous bit which in turn depends on the carry out of the bit before that, the adder becomes

increasingly slow and cumbersome to deal with in a high speed circuit with the addition of each

additional bit as the propagation delays of each previous full adder are added in series creating

extremely long delay times.

The Carry-Lookahead Adder

One solution to the problem of increasing delay times in the cascading of full adders is the carry-

lookahead adder. This adder is based on the fact that a carry signal is generated in two cases:

1. When both input bits are 1, or

2. When one of the two bits is 1 and the carry-in is 1

Implementing these two cases in an adder circuits gives us the logic diagram as shown below.

Figure 4.1.7: Logic Expression for Carry-Lookahead Adder cases

Where the two intermediate signals shown on the diagram are defined as:

Carry Generate (G) - generated when both of the input bits of a single adder are both ‘1’ regardless

of the carry in value

Carry Propagate (P) – This signal is generated by the XOR of the input bits. The purpose of this is

to carry the carry in of the addition through to the carry out immediately if one of the input bits is

‘1’ because if that is true then there is directly dependent on the carry in.

Looking at the 4-bit carry-lookahead adder it consists of three levels of logic:

1. First level: The first level generates all of the P and G signals in the adder. This means one

set for each of the four levels.

2. Second level: This is the Carry-lookahead block which consists of four 2-level

implantations of logic. It generates the carry signals for each bit of the adder as defined by

these equations

Page 85 of 312

3. Third level: Four XOR gates which generate the sum signals for the P and carry in of each

of the four levels of the adder

With this set up the delay of the carry-lookahead adder is 4τ. Comparing this with a 4-bit ripple

counter that has a delay of (2n+1) τ where n is the number of bits in the adder. This means that

for a 4-bit ripple counter it takes 9τ compared to the 4τ of the carry-lookahead counter.

The disadvantage of carry-lookahead adders however, is that once they are constructed beyond 4-

bits the carry equations needed for the second level of logic become overly complicated and

cumbersome. This is why most carry-lookahead counters are implemented in 4-bit modules and

cascaded similar to ordinary full adders.

Page 86 of 312

4.2. Subtraction

The in order implement a subtraction operation, we need to ensure that the arithmetic operation

being performed is in two’s complement as done with the addition operation.

As such, to subtract B from A, we invert input B and then add 1 to the inverted B value to generate

a two’s complement expression for the A-B operation. Then the two’s complement of B is added

to A in the adder to find the result.

So the final expression for the subtract operation is:

Sum = A + (B’ + 1)

To account for the addition of 1 to B we can take the circuit for a full adder and add a mux to select

a Carry input of 1 to the Least Significant bit, when a control signal is sent the mux will select

between the Cin of 0 (for addition) or 1 (for subtraction). As such the circuit for the subtraction

operation is simply the addition of two mux’s and a not gate.

Figure 4.2.1: Algorithmic Logic Unit that performs Subtraction

Page 87 of 312

4.3. Counters

Unlike combinational circuits where the system produce an output based on input variables only,

sequential circuits use input variables and pervious input variables by storing the information and

putting in back into the circuit on the next clock cycle (activation edge). This type of circuit uses

pervious input, output, clock and a memory element

Figure 4.3.1: Sequential Logic derived from Combinational Logic

The figure above shows a theoretical view of how sequential logic are made up from

combinational logic and some memory storage element.

There are two types of inputs to the combinational logic:

 External inputs: come from outside the circuit and they are not controlled by the circuit

 Internal inputs: function of a pervious output states

Synchronous:

In synchronous circuits the input are pulses or levels to drive the circuit. Synchronous circuits are

known as clocked sequential circuits which uses flip-flops or gate latches as digital storage

(memory elements). There is a (synchronizing) periodic clock connected to the clock inputs of all

the memory elements of the circuit, to synchronize all internal changes of state. Therefore, the

operation of the entire circuit is controlled and synchronized by the periodic pulses of the clock.

Page 88 of 312

Figure 4.3.2: Block diagram of a synchronous sequential circuit

Asynchronous:

In asynchronous sequential circuits the inputs are levels and there are no clock pulses, only the

change in inputs drive the circuit. In other words, if the circuit does not employ a periodic clock

signal to synchronize its internal changes of state is considered to be asynchronous. In general, an

asynchronous circuit does not need the timing control of the synchronous type.

Figure 4.3.3: Block diagram of a synchronous sequential circuit

To recap, in sequential circuits the output depends, not only on the combination of logic states at

its inputs, but also on the logic states that existed previously. In other words the output depends

on a SEQUENCE of events occurring at the circuit inputs. Examples of such circuits include

clocks, flip-flops, bi-stables, counters, memories, and registers. In this chapter, the concept of

these circuits will be introduced. Also, we will discuss some examples of sequential circuit that

were used in our Nibble Knowledge computer kit.

Page 89 of 312

What are Counters?

A counter is a device that stores the amount of times an event has occurred in relation to a clock

signal. Sequential digital logic circuits are the most common type of counter. They include an input

line called a ‘clock’ and multiple output lines. These output lines usually represent a number in

either binary or BCD. When a pulse is applied to the input line (or a clock signal) the counter will

either increment or decrement depending on how you have set up your counter. Counters are easily

designed using a cascade of flip-flops (“Counter (digital)”, n.d., para. 1-2).

Why are Counters Used?

Counters are generally used to keep time and control the length of processes. Counters have many

applications, some of which include:

 They keep time in alarm clocks

 They count to a predefined number when you set a delay timer on your camera

 The frequency of flashes for signal lights on vehicles are controlled by counters

Although counters have a vast variety of applications in many industries the role they have in

computers is paramount.

Where are they used in the Computer?

Without the use of counters a computer would not work. The two most important roles that

counters have within a computer are:

I. Dividing the clock frequency, since some elements of a computer run at a lower frequency than

others

II. Controlling the length of processes within various elements of the computer

Example:

When a PS/2 Keyboard button is pressed it sends an 11-bit code along with a clock signal to the

PS/2 keyboard controller (the intermediate interface between the keyboard and the CPU). The

code sent from the keyboard is shifted into a serial in parallel out shift register. A counter is used

to count the pulses of the clock signal sent by the keyboard and halts the shift register when eleven

clock pulses have been counted. The counter is vital in this application because it avoids the loss

of any data transferred from keyboard to keyboard controller.

Page 90 of 312

Theory

There are two classes of counters in sequential circuit design: Asynchronous and Synchronous.

The latter of the two has one distinct clock (i.e. all flip-flops within the counter are triggered by

the same clock). This is not the case for the former. Synchronous counters are the preferred counter

used in computers since the asynchronous counter has some timing skew which leads to issues

when working together with synchronous logic.

Asynchronous Counters

A cascade of JK flip-flops can be used to design an asynchronous counter. As seen in previous

sections of the textbook, when both inputs of a JK flip-flop are set to ‘high’ the flip-flop will enter

toggle mode. When a flip-flop is in toggle mode it will toggle from ‘low’ to ‘high’ at the rising

edge of clock for a positive edge triggered flip-flop. By taking the inverted output of one flip-flop

(i.e. Q’) and using it as an input to the clock for the next flip-flop it will cut the clock frequency in

half. Therefore, the second flip-flop will only change values when the first flip-flop has toggled

from ‘low’ to ‘high’ and back to ‘low’. This behavior is precisely why this design works so great

for binary counting.

Counters are able to count in a variety ways (i.e. BCD, binary, decimal, etc.). How they count all

depends on how the flip-flops are hooked together. We will outline how asynchronous counters

count in binary below. If you refer to Figure 4.3.4 below, which demonstrate up counting,

whenever a transition from ‘low’ to ‘high’ is made for a significant bit a transition from ‘low’ to

‘high’ is made in the next most significant bit. This demonstrates that in the way the flip-flops are

hooked up they can be used as a binary up counter.

Page 91 of 312

Figure 4.3.4: Logic behind Binary up Asynchronous Counter

As you can see in the Figure 4.3.5 below, Q1 transitions from ‘low’ to ‘high’ when Q0’ transitions

from ‘low’ to ‘high’ (i.e. Q0 transitions from ‘high’ to ‘low’). This is the case because, Q0’ is

hooked into the input line of the next flip-flop. This pattern continues with Q2 & Q1’ and Q3 and

Q2’, which completes the four bit up counter.

Figure 4.3.5: Up count sequence

Figure 4.3.6: Down count sequence

Page 92 of 312

Figure 4.3.7: Circuit Diagram of the Up and Down Counter

Synchronous Counters

As the asynchronous four-bit up counter, the synchronous four-bit up counter is also designed

using a cascade of JK flip-flops, although a few modifications are made. All of the clock inputs

are this time connected together and therefore change states simultaneously. Also the following

adjustments are made to the J and K inputs of the flip-flops:

I. FF0: J and K are set to ‘high’

II. FF1: J and K are set to Q0

III. FF2: J and K are set to (Q0 AND Q1)

IV. FF3: J and K are set to (Q0 AND Q1 AND Q2)

The outputs of the synchronous counter are taken from Q. Just like the asynchronous up counter.

The four-bit synchronous up counter exploits the fact that before a bit toggles, all preceding bits

must first be ‘high’. This is why the extra logic is needed in the design of the synchronous counter.

Other than FF0 (which will always be in toggle mode) FF1-FF3 will only be in toggle mode when

all preceding flip-flop outputs are ‘high’. The flip-flops will therefore behave in the following

manner:

I. FF0: Will always toggle with the clock

II. FF1: Will only toggle when Q0 is ‘high’

III. FF2: Will only toggle when Q0 AND Q1 are ‘high’

IV. FF3: Will only toggle when Q0 AND Q1 AND Q2 are ‘high’

Page 93 of 312

Therefore, the circuit will behave as a four bit binary up counter as outlined in the figure below.

Figure 4.3.8: Logic behind Binary up Synchronous Counter

When examining the four-bit synchronous down counter another useful observation can be made.

Before a flip-flop will toggle all preceding bits must be set to ‘low’. Therefore, the following

adjustments are made to the inputs J and K of the flop-flops:

I. FF0: J and K are set to ‘high’

II. FF1: J and K are set to Q0’

III. FF2: J and K are set to (Q0’ AND Q1’)

IV. FF3: J and K are set to ((Q0’ AND Q1’ AND Q2’)

The flip-flops will therefore behave in the following manner:

I. FF0: Will always toggle with the clock

II. FF1: Will only toggle when Q0’ is ‘high’

III. FF2: Will only toggle when Q0’ AND Q1’ are ‘high’

IV. FF3: Will only toggle when Q0’ AND Q1’ AND Q2’ are ‘high’

Page 94 of 312

The outputs for the synchronous four-bit down counter are also taken from Q, similar to the four-

bit synchronous up counter. The counter will now behave as a four-bit synchronous down counter

as outlined in Figure 4.3.9 below.

Figure 4.3.9: Logic behind Binary down Synchronous Counter

Figure 4.3.10: Circuit Diagram of the 4-Bit Synchronous Up Counter

Page 95 of 312

Figure 4.3.11: Circuit Diagram of the 4-Bit Synchronous Down Counter

Page 96 of 312

4.4 Multiplication/Division – High Level

In general, multiplication and division circuits are complicated and will only be introduced in this

textbook. Extensive details will not be provided.

Multipliers as the name implies take two values, be they binary or decimal, and multiplies them

together. The process of multiply digital values (binary) is very similar to that of decimal

multiplication. They are used in digital process systems (DSP), some applications include digital

filtering, digital communications and spectral analysis.

Decimal Multiplication

Binary Multiplication

The process involves shifting the multiplicand and adding zero to that multiplicand. Each

multiplier bit determines whether a zero is added or a shift version of the multiplicand.

Page 97 of 312

Figure 4.4.1: Example of Binary Multiplication with the Circuit Model

The AND gate in the Full Adder performs the selection for each bit. The AND Gate is the bit

multiplier. The above design does not work for signed two’s complement numbers.

There are many types of sequential circuits that accomplish multiplying:

 Shift and Add Multiplier

 Bit-serial Multiplier

 Array Multiplier

Shit and ADD Multiplier

Figure 4.4.2: Shit and ADD Multiplier block Diagram

The partial product is summed, one at a time. Each partial product is shifted versions of A or 0.

Signed multiplication:

Page 98 of 312

Two’s complement: MSB (most significant bit) has negative weight.

For multiplication

a) Subtract final partial product

b) Sign-extend partial products

Modifications to shift and circuit

a) Add/Subtract

b) Sign-extender on P shifter register

Figure 4.4.3: Circuit Diagram of the Multiplier

Division

The “comparison requires a subtract, the sign of the results is examined; if the result is negative,

the divisor must be added back

Page 99 of 312

Figure 4.4.4: Example of Division

Figure 4.4.5: Block Diagram of Division

Page 100 of 312

4.5 Comparator

In general, comparator circuits are complicated and will only be introduced in this textbook.

Extensive details will not be provided.

Binary comparators, which are also called digital comparators or logic comparators, are

combinational logic circuits that are used for checking whether the value represented by one binary

word is greater than, less than, or equal to the value represented by another binary word. It applies

the same principles as equality/inequality comparisons that are performed in everyday arithmetic.

There are two basic types of comparators that are most commonly implemented in the digital

circuits.

 Equality comparators.

 Magnitude comparators.

Equality Comparators

An equality comparator circuit that is shown in Fig 4.6.1 below is the simplest multibit logic

comparator. This equality comparator could be used for real life applications like electronic locks

and security devices where a binary password consisting of multiple bits is inputted to the

comparator and has to be compared with another preset word.

In Figure 4.6.1, a logic 1 (high) will be present at the output if the two inputs match, otherwise the

output remains at 0. Therefore there is only one input combination that is correct, and the more

bits the input words possesses, the more possible wrong combinations there are. The circuit of the

equality comparator consists of an exclusive NOR gate (XNOR) per pair of input bits. If the two

inputs are the same, either both are 1s or both are 0s, an output of logic 1 is obtained.

Fig. 4.5.1: Four Bit Equality Comparator Circuit

Page 101 of 312

The outputs of the XNOR gates are then combined in an AND gate, the output of which will be 1,

only when all the XNOR gates indicate matched inputs.

Magnitude Comparator

Magnitude comparator is a combinational circuit that compares two numbers and determines their

relative magnitude. The magnitude comparator indicate equality, but has further two outputs, one

that is logic 1 when word A is greater than word B, and another that is logic 1 when word A is less

than word B. Magnitude comparators therefore, form the basis of decision making in logic circuits.

Any logical problem can be reduced to one or more yes/no decisions based on a pair of compared

values.

A comparator block diagram is shown in figure 4.6.2. The output of comparator is usually 3 binary

variables indicating:

I. A>B

II. A=B

III. A<B

Fig. 4.5.2: Block Diagram of Magnitude Comparator

The Circuit diagram of the above comparator is shown in Figure 4.6.3 below. Gate 1 produces the

function A>B and gate 3 gives A<B, while gate 2 is an XNOR gate giving an equality output. This

basic circuit for a magnitude comparator may be extended for any number of bits but the more bits

the circuit has to compare, the more complex the circuit gets.

We shall now construct a 2-Bit comparator by analyzing the logic required to construct the design.

Below is the block diagram of a 2-Bit comparator.

Page 102 of 312

Figure 4.5.3: Block Diagram of 2-Bit Comparator

We shall imply a simpler method to find the three different cases shown above, X, Y and Z.

Case 1: We know that A=B if all Ai= Bi

Ai Bi Xi

0 0 1

0 1 0

1 0 0

1 1 0

Table 4.5.1: Truth Table for Case 1

It means X0 = A0B0 + A’0B’0 and X1= A1B1 + A’1B’1

If X0=1 and X1=1 then A0=B0 and A1=B1

Thus, if A=B then X0X1 = 1 it means X= (A0B0 + A’0B’0) (A1B1 + A’1B’1) since (x ⊕ y)’ =

(xy +x’y’)

X= (A0⊕B0)’ (A1⊕B1)’ = ((A0 ⊕ B0) + (A1 ⊕ B1))’

It means for X we can NOR the result of two exclusive-OR gates.

Even though this analysis is simple, it is beyond the scope of this textbook. Case 2 and Case 3 we

derived by following a similar approach. The above magnitude comparator can be constructed by

the logic circuit below.

Figure 4.5.4: Circuit Diagram of 2-Bit Comparator

Page 103 of 312

The circuit diagram of a 4-Bit Magnitude Comparator is much more complicated. It is illustrated

in the figure below. The circuits, equations and theory in this section are referenced to Dong. X.,

Peng. M., Al-Khalili. A. (2015). Design of a 4-Bit Comparator. Project Report for COEN6511:

ASIC Design. Department of Electrical and Computer Engineering. Concordia University,

Montreal, Quebec

Figure 4.5.5: Circuit Diagram of 4-Bit Magnitude Comparator

Page 104 of 312

4.6 Registers: Shift Registers

The computer processor is made up of many different components. The main component we will

be focusing on for this section is the register. Registers are a type of sequential logic circuit with a

main purpose of storing digital data. A register may hold instructions that come in differentiating

sizes. For example, a 32-bit instruction computer must have a register 32 bits in length in order to

hold a large enough instruction. Even though the Nibble knowledge kit have a different set of bit

instructions, registers are still used in the same way and for the same purpose. Furthermore, there

are many different computer designs. Some computer designs may only require half registers for

shorter instructions. This all depends on the computer and processor design. You will learn more

about the 4-bit computer and its processor design in advanced sections of this book.

Registers act like the memory system. They are the top of the memory hierarchy and can

effectively speed up the manipulation of data. A single register consists of a group of flip-flops

and gates. The flip-flops contain the information and the gates control how new information moves

into the register. Figure 4.6.1 displays how a 4-bit register is composed of 4 flip-flops that is

triggered by the common clock input.

Figure 4.6.1: Circuit Diagram of a 4-Bit Register

Parallel Load Register

The transfer of new information into a register is referred to as loading the register. If there is a

common clock pulse and all the bits of the register are loaded simultaneously, then the loading is

done in parallel. Load input determines whether or not the next clock pulse will leave the existing

information in the register or it will accept new information.

Page 105 of 312

Shift Registers

Shift registers consist of a group of flip-flops set in a linear fashion that consist of inputs and

outputs connected together that data shifts down the line when the circuit is activated. The simplest

shift register uses only flip-flops. Figure 4.6.2 displays how data moves down in a linear fashion

and still follows a common clock pulse. In this case the data will be shifted right from the least

significant bit ‘Q1’ to the most significant bit ‘Q4’. Register can have different configuration to

shift left or even in both direction as we are going to learn later in this section.

Figure 4.6.2: Data flow through a shift register

General shift registers have many capabilities such as; parallel load, control state, input for clock

pulse, shift right and shift left operations. A serial input determines what enters into the furthest to

the left position during the shift. Serial output is taken from the output of the flip-flop furthest to

the right. It is important to note that the clock remains common to all flip-flops. A unidirectional

shift registers is capable of shifting in only one direction. Therefore, bidirectional shift registers

can shift in both directions (left and right). Figure 1.3 displays a bidirectional shift register.

Figure 4.6.3: Bidirectional Shift Register with Parallel Load

Page 106 of 312

4.7. ALU

The two fundamental components of a CPU (computer processing unit) are the control unit, and

the ALU. The control unit basically directs operations within a computer processor and decodes

instructions into commands for the ALU and determines the sequence of operations.

An ALU stands for Arithmetic-Logic Unit. It is a component of the computer processor that carries

out arithmetic and logic operations on the operands and combines them into a single unit as

computer instruction words.

Figure 4.7.1: Block Diagram of the ALU

The components of an ALU consists of:

Inputs A/B: These are data inputs that are used in the ALU computation each input is N bits in

size.

Result: The result of the ALU computation is an output value of N bits.

Control Unit: The control unit sends a control signal to the ALU to tell it which operation to

perform.

The following are known as status flags:

Zero: Indicates if the result of an operation is zero, by determining if two values are equal.

Carry out: Indicates if the operation resulted in a carry.

Page 107 of 312

Recall that a carry can occur if the result is greater than or equal to 232

Overflow: Indicates that the result of an operation is too large.

Recall that an overflow occurs if the result is greater than or equal to 231 or less than -231.

The first step in determining the ALU operation is to understand the different control signals that

indicate the function to be performed.

For example, the following control signals may be used as input to the ALU to instruct it on which

function to perform:

Function Control Signal

AND 000

OR 001

ADD 010

SUBTRACT 110

Table 4.7.1: Control Signals for functions AND, OR, ADD and SUBTRACT

Next comes the combination of multiplexers and adders to design basic 1-Bit ALU’s.

The multiplexor is used to choose from one of the two inputs coming into the ALU based on the

control signal, and outputs the result.

4.7.2 1-Bit ALU: AND, OR and Addition

Figure 4.7.2: 1-bit ALU for logical functions AND and OR

Here, the control signal has two possible inputs:

Function Control Signal

AND 0

OR 1

Table 4.7.2: Control Signals for functions AND & OR

The signal from the control unit determines whether the result (output) will come from the AND

gate or the OR gate. For ADD and SUBTRACT arithmetic functions we need to implement an

Page 108 of 312

adder circuit. The addition and Subtraction circuits have been explained in detail in the previous

sections above, 4.1 and 4.2. In order to design an ALU that performs multiple operations we simply

need to change the type of multiplexer being implemented to select the appropriate result. As such

a 1-Bit ALU that performs three functions such as AND, OR, and ADD will implement a 4-input

multiplexer that outputs a single result. The control signals for this ALU can be assigned as

follows:

Function Control Signal

AND 000

OR 001

ADD 010

SUBTRACT 011

Table 4.7.3: Control Signals for functions AND, OR, ADD, and SUBTRACT

The result is the following 1- bit ALU:

Figure 4.7.3: 1-bit ALU that performs AND, OR and addition

4.7.3 4- Bit ALU: Overflow and Zero Flag Detection

From section 2.3, you may recall that overflow occurs when the size of the inputs is such that there

is a carry, which changes the most significant sign bit. As such, overflow indicates when the sign

of the result is different from the sign of the inputs.

Overflow detection is for add/subtract operations, as it is bound to occur if the addition or

subtraction result does not fit into the n-bits of the final result output of the ALU.

Page 109 of 312

To detect overflow a XOR gate is added to the last adder of an n-bit ripple carry adder. Its compares

the carry in to the carry out values and detects overflow if they are different.

Figure 4.7.4: 4-bit ripple carry adder with overflow detection.

Example: The XOR gate has overflow detection with addition operation

Case Cin Cout Sum

Add two negative numbers (An-1= 1, Bn-1=1) 0 1 0

Add two positive numbers (An-1= 0, Bn-1=0) 1 0 1

Table 4.7.4: XOR gate overflow detection addition cases; 0 = positive, 1 = negative

Zero detection basically checks the result and determines if all the result bits are zero. If the result

is zero, i.e. all bits are zero, then the OR gate will output a 0 and the NOT gate will invert that

result to a 1, to indicate a zero has been detected. If the result is not zero, i.e. not all bits are zero,

then the OR gate will output a 1 and the NOT gate will invert that result to a 0, to indicate a zero

has not been detected.

The implementation of zero detection is shown in the figure below.

Page 110 of 312

Figure 4.7.5: 4-bit ALU with Zero detection.

4.7.4 The Nibble Knowledge ALU

The ALU or Arithmetic Logic Unit is where instructions are carried out in the CPU. It firsts

determines what to do with the data as specified by the OP code and performs the required

arithmetic and sends out the proper control signals to various parts of the CPU.

Page 111 of 312

Figure 4.7.6: Circuit Schematic of the ALU

ALU Decode

The ALU decode is what tells the rest of the ALU components what to do. On the first cycles of

the 6 cycles it takes to run an instruction, the opcode is saved inside the decode unit (this will be

on the data in line from main memory). The chart below shows which signals each instruction

requires. The only clock driven components in the ALU are the A, opcode (inside the ALU

decode), and STAT registers. Everything is combinational and will basically be running even when

the decoder signals are not specifically assigned. During cycle 6, the execute phase enables and

select signals are turned on based on the opcode, and the instruction is complete.

Instruction WE HL

T

A_EN STAT_EN JMP Arith_S Stat_S LOD_S

HLT 0 1 0 0 0 X X X

LOD 0 0 1 0 0 X X 1

STR 1 0 0 0 0 X X X

ADD 0 0 1 1 0 0 0 0

Page 112 of 312

NOP 0 0 0 0 0 X X X

NND 0 0 1 0 0 1 0 0

CXA 0 0 1 0 0 X 1 0

JMP 0 0 0 0 1 X X X

Table 4.7.5: Low Level Design of Top CPU Module

Using the logic developed in above table, equations were developed to create the right signals out

of logic for implementation. These equations are:

Aen = C' JMP = ABC'

Sen = A + B' +C' ArithS = A

HLT = A + B + C StatS = AB

WE = A + B' + C LodS = A'B'

These are the equations used in the implementation of the ALU

Figure 4.7.7: ALU Decode Circuit Schematic

Page 113 of 312

ALU Logical/Arithmetic Operations

The ALU is capable of two operations: a bitwise NAND of the A register with a memory location,

and a 4-bit add. These are combinational circuits as stated above, so they will be running even if

the instruction does not require them.

MUXs/XORs/ANDs

The two XOR gates in the middle of the ALU are used for overflow detection. Even though there

is only an ADD, and most operations will be unsigned, the overflow detection for comparisons

was implemented. After which, XOR the overflow bit with the MSB of the sum and this will

determine whether a number is greater than the other, or less than.

The Bus Interface and Memory

The IO Board holds the CPU’s main memory and the registers for the memory mapped I/O

addresses. This means that this section manages the RAM and the input and output to the bus. This

is accomplished by first taking the 16 bit address line coming into the block and determining if it

was in the lowest three addresses by a chain of NAND gates the output of this logic block is then

used as the enable for a decoder of which the bottom two bits are sent as inputs. This causes the

right DFF corresponding to the bottom two bits to be enabled if the top 14 bits of the address line

are ‘0’ else they are disabled from propagating. Whether the address is in a memory IO spot the

data is always sent to the RAM chip no matter what. To get data from the I/O board the same

bottom two address bits are sent to a 4 to 1 multiplexer that selects either the Data register, Stat

register, Chip Select, or the RAM chip to output back to the CPU.

Page 114 of 312

Figure 4.7.8: Circuit Schematic of the CPU I/O

Figure 4.7.9: ALU 4-Bit Adder and NANDer Circuit Schematic

Page 115 of 312

5. Computer Architecture

5.1 Instruction Set

The formal definition of the instruction set is that it is a group of commands for a CPU in machine

language. The term can refer to all possible instructions for a CPU or a subset of instructions to

enhance its performance in certain situations. The language that the computer understands is the

instruction set and the operators and operands are the ALU, registers and memory of the computer

respectively. It is wise to study the computer’s language (Instruction Set) to understand the

computer’s architecture. To describe it as an analogy, the vocabulary is the instruction set and the

words are the instructions. Each and every single program that is running on the computer uses the

same instructions and the instruction set. The instruction set provides commands to the processor,

to tell it what it needs to do. The instruction set consists of addressing modes, instructions, native

data types, registers, memory architecture, interrupt, and exception handling, and external I/O. All

CPUs have instruction sets that enable commands to the processor directing the CPU to switch the

relevant transistors. However, the instruction set of the Nibble Knowledge Computer is simpler.

The Nibble Knowledge computer has been designed with hardware simplicity in mind. The RAM

of the CPU is very small compared to your average computer. The RAM is 65536 nits in size and

the memory cell size is 4 bits, a nibble, hence the name Nibble Knowledge.

Registers

The Nibble Knowledge computer has only four different registers, which hold the addresses of

instructions, data and information for arithmetic operations. Registers hold values for the CPU to

use for various purposes. Modern day processors have many of these registers for convenience in

computation and programing. The Nibble Knowledge computer however, only has a few essential

registers. The table below describes the registers.

Register Width (bits) Comments

PC 16 Program counter; holds current address of next instruction to be

loaded

A 4 Accumulator register used for arithmetic and other operations

MEM 16 Holds the address being used by an instruction at any given time.

Page 116 of 312

STAT 4 layout: (signed overflow bit) XOR with MSB of the A register,

EMPTY, HLT, Carry bit

Table 5.1.1: Registers and their operations

Instruction Set

The table below describes the instruction set of the Nibble Knowledge computer. These eight

instructions are supported by the architecture of the CPU and their machine code format and

description. You will later see how this instruction sets determines the layout of the entire CPU in

chapter 7 on CPU.

Instruction Format Description

HLT 0000-0000-0000-0000-0000 Halts the CPU

LOD 0001-16-bit address to load from Loads a value from location specified into

the A register

STR 0010-16-bit address to store to Stores the value in the A register into

memory location specified

ADD 0011-16-bit address to add from Adds the value at the location specified, plus

the existing carry flag, into the value in A.

Sets carry and overflow flags as required

NOP 0100-0000-0000-0000-0000 No operation

NND 0101-16-bit address to NAND

from

Bitwise NANDS the value at the location

specified into the value in A

JMP 0110-16-bit address to jump to Jumps to location specified by setting the

program counter to that address

CXA 0111-0000-0000-0000-0000 Copies the STAT register into the A

Table 5.1.2: Machine Code Format and Description of Instruction Set

The Instruction Set above, could further be developed into a microinstruction set. The table below

describes the microinstruction set of the computer.

Instruction Type of Micro Comments

A->IR TransferRtoR Transfers the contents of A into IR

Page 117 of 312

Carry->A0 TransferRtoR Transfers the carry bit into the A and shifts it to the LSB

IR->A TransferRtoR Transfers IR into A

IR->MEM1 TransferRtoR Moves bits from the IR to the LSBs of MEM register (0

to 3)

IR->MEM2 TransferRtoR Moves bits from the IR to the LSBs of MEM register (4

to 7)

IR->MEM3 TransferRtoR Moves bits from the IR to the LSBs of MEM register (8

to 11)

IR->MEM4 TransferRtoR Moves bits from the IR to the LSBs of MEM register

(12 to 15)

MEM->PC TransferRtoR Moves the contents of MEM into PC

XOR->XORb TransferRtoR Transfers the 0 bit of IR into the 0 bit of STAT (Used

after XOR of Carry and MSB in A)

XORb->A3 TransferRtoR Transfers the XORb bit (3 in STAT) into bit 1 of A

Zero->A1 TransferRtoR Transfers the halt (which will be zero if running) into bit

1 or A

Zero->A2 TransferRtoR Transfers the halt (which will be zero if running) into bit

2 or A

Load MemoryAccess Loads the 4 bit value stored at address “MEM” into the

A

Load Instruction MemoryAccess Loads 4 bit value stared at address “PC” into IR

Store MemoryAccess Stores the 4 bit A value into address location “MEM”

Add* Arithmetic Adds the 4 bit value stored at IR to the 4 bit value in the

A and assigns the carry bit in STAT if necessary

Halt SetCondBit Sets the halt bit in STAT to 1

PC+1 Increment Adds 1(cell) to the current address in PC

Not Logical Negates the current value in A (NANDs A with itself)

NAND* Logical NANDs IR and A and stores result in A

Page 118 of 312

XOR Logical XORs STAT and A to get the XOR of carry bit and

MSB of A

If A ==0 Test If A is 0000 then skip the next 14 microinstructions (See

JMP)

Decode Decode Decodes the OPcode (value in IR) of the instruction

 Table 5.1.3: Description of Microinstruction Set

For the microinstructions, it is always assumed that the programmer loads a value into a register

beforehand, or, the value must already be in the A register. How to use these instructions is

described in section 5.2 below.

Page 119 of 312

5.2 Assembly Language

In simple terms, assembly language is the readable version of machine language that humans can

understand. The assembly language is composed of instructions that specify the operation to

perform and where to conduct that operation. An Assembler, which is program in the computer

that takes the assembly language and converts it into machine code that the computer will

understand and execute. The Nibble Knowledge Computer uses an assembly language that was

developed only for the Nibble Knowledge CPU.

Instructions

Instructions are like the words used to describe an operation.

For example, if you wanted to subtract two number, say X – Y = Z, then in English, you would

say, Z equals the number that is a result of Y being subtracted from X. In assembly language, the

translation is similar.

Subtraction of X – Y = Z in Assembly Language is:

LOD addressY ; Put Y into A

NND n15 ; Negate Y

ADD n1 ; Add 1 to Negated Y (Finished Two’s Compliment)

ADD addressX ; Add X to Negated Y (X-Y)

Implementation of the Subtraction Instruction with X – Y = Z is as follows:

1. Load value Y into A from memory

2. Negate the Bits in A (flip Y)

3. Add 1 to A

4. Add value X from memory to A

5. The Value in A should now be Z and the Carry and XOR Bit of the STAT Register Set

One may read the assembly into English equivalent as “put Y into memory location A, negate y

from it, then compute the binary subtraction by adding 1 to the negated Y, which is doing the

Two’s Complement (discussed in section 2.3 above and reviewed below), and then add X to the

negated Y value.

Page 120 of 312

Two’s Complement Comparison

Comparison is achieved by subtracting the two values in question.

 If the subtraction equals zero the values are equal

 If the result is non-zero, XOR the MSB of the result and the carry bit. If the XOR is 1 the

subtraction was less than zero resulting and when the XOR is 0 the result is positive

Example: Two’s Complement Comparison

Implementation of Comparison: Comparison of X & Y

1. Transfer value X to the IR from the A

2. Load value Y into register A

3. Negate the bits in register A (flip Y)

4. Add 1 to A

5. Add the IR to A (X + -Y)

6. XOR Bit 3 of A and Bit 0 of Stat

7. Store Result in Bit 3 of Stat

8. Check the XOR bit (Bit 3 of Stat)

9. If the XOR bit is 0 X >= Y

10. If the XOR bit is 1 X < Y

Comparison of X & Y in Assembly:

LOD addressY ; Put Y into A

NND n15 ; Negate Y

ADD n1 ; Adds 1 to Negated Y (Finished Two’s Compliment)

ADD addressX ; Add X to Negated Y (X-Y)

CXA ; Copies Carry and XORb to A

NND n8

NND n15 ; ANDs with 0010 to remove carry bit and leave XORb

JMP TAG ; Jumps to tag if X >= Y else continue

Page 121 of 312

Logic Functions

Here, it must be assumed that the value of variable X is already in register A.

NOT X = X’

1. NAND with n15 in data table

2. The value in A is now X’

Assembly:

NND n15 ; X = X’

Figure 5.2.1: NOT X = X’

X AND Y = Z

1. NAND with the address of Y

2. NAND with n15 in data table

3. The Value in A is now Z

Assembly:

NND addressY ; NAND with Y

NND n15 ; Negate A = Z

Figure 5.2.2: X AND Y = Z

X

1
X

X

Y
1

Z

Page 122 of 312

X OR Y =Z

1. NAND with n15 in data table

2. The value in A is now X’

3. Save X’ into memory

4. Load Y into A

5. NAND with n15 in data table

6. The value in A is now Y’

7. NAND with the address that stores X’

8. The value in A is now Z

Assembly:

NND n15 ; X = X’

STR addressX’ ; Store X’ in Mem

LOD addressY ; Load Y

NND n15 ; Y = Y’

NND addressX’ ; Y’ NAND X’ = Z

Figure 5.2.3: X OR Y = Z

X XOR Y = Z

1. Save X into memory

2. NAND with the address of Y

3. The value in A is now intermediate value 1

4. Save the intermediate value into memory

X

1

Y

1

Page 123 of 312

5. NAND with the address that stores X

6. The value in A is now intermediate value 2

7. Save intermediate value 2 into memory

8. Load intermediate value 1 into A

9. NAND with the address that stores Y

10. The value in A is now intermediate value 3

11. NAND with the address that stores intermediate value 2

12. The value in A is now Z

Assembly:

STR addressX ; Store X into Mem

NND addressY ; X NAND Y = Inter1

STR addressInter1 ; Store Intermediate 1 in Mem

NND addressX ; Inter1 NAND X = Inter2

STR addressInter2 ; Store Intermediate 2 in Mem

LOD addressInter1 ; Load Intermediate 1 into Mem

NND addressY ; Inter1 NAND Y =Inter3

NND addressInter2 ; Inter3 NAND Inter2 = Z

Note: Carry into MSB XOR with carry out XOR with MSB of sum

Figure 5.2.2: X XOR Y = Z

There are endless possibilities of what can be done with the Assembly language. With the assembly

language, the programmer is in command of the processor running the computer.

X

Y

Page 124 of 312

6. Nibble Knowledge Computer High Level Design

The project encompasses the design of a 4-bit computer system that holds an educational value,

where an individual would be able to learn the internal functionalities of a CPU. The high level

design is divided into four subsections to clearly explain the implementation of the preferred

solution. This will enable us to show how the various components of the solution are related and

interact with each other.

Overall Design: CPU and Connected Devices

The overall design consists of CPU, Memory, Peripheral Controllers, Peripheral Devices and a

Peripheral Bus. The five peripheral devices are the Serial Communication RS232 Controller, VGA

Monitor Controller, IDE Hard Drive Controller, PS/2 Keyboard Controller and the Audio

Controller. The Serial network will be used to communicate with other computers and the local

area network; for example to generate a response to tweets. The VGA Monitor will display a visual

output, while the speaker will output audio waveforms. The PS/2 keyboard will be able to take

user input. The CPU will control all the above processes. Each of the peripheral devices will be

connected to their own controller device, which is connected by a 4-bit data bus to the CPU. The

controllers will govern the interaction process between the peripheral devices and the CPU, for

instance, data transfer, error detection, communication and timing control. Both RAM and a boot

ROM will to store data for execution. The figure below illustrates the overall design.

Page 125 of 312

Figure 6.1: A diagram of CPU and connected devices.

Connection between CPU and an External Device

The CPU interfaces with the peripheral device controllers using a technique known as “memory

mapped I/O”, where the peripheral bus is simply treated as a readable and writable location in

memory. There are three 4-bit outputs from the CPU that are used to communicate with the

peripheral device controllers. Address 0, the chip select, is a 4-bit input to a de-multiplexer that

sends an enable signal to the selected device, allowing it to interact with the CPU and utilize the

data and status buses. Address 1, the status bus, is a 4-bit output that contains the information for

Page 126 of 312

device synchronization and tells the peripheral controller whether the CPU is attempting to send

or receive data, and allows the controller to tell the CPU if it is ready for such action. Address 2 is

the data bus, where data is exchanged between the controller and the CPU, 4-bits at a time. Figure

6.2 visually illustrates the connection between CPU and an external device.

Figure 6.2: A diagram illustrating the connection between CPU and an external device.

Address Spaces in Memory

The total address space required for a 16-bit wide address would be 2^16, which is from 0 to 65535

bits. The following illustrates the general layout of memory, and numbers are used to comparable

relative sizes. In the final design, the exact sizes will likely change. The first 3 address spaces (0-

2) will be allocated for peripheral input and output for chip select, status and data respectively.

Boot ROM is allocated to address spaces from 3 to 1024 bits. Address spaces 3 to 18 will be

allocated for the numbers 0 to 15 (as this aids in certain elementary operations in the CPU), address

space 19 to 512 will be for the IDE Driver, as the system must boot from information stored on

the hard drive; and address space 513 to 1024 are for initialization code which is used to boot the

computer up. The remaining address spaces will be allocated to the RAM, from 1025 to 65355

bits. Zero Page Operating System functionality, which reloads the command prompt after

completion of a user space process, will be from address space 1025 to 1537 bits. Within RAM,

the user space process will be allocated in memory from address space 1037 to 65355 bits.

Page 127 of 312

Operating system libraries, which include drivers and anything necessary to talk to the hardware,

will be allocated memory from 1538 to 11788 bits and standard library for user space

programming, which includes things such as the functions to print strings to the screen and certain

advanced math functions, will be allocated memory from 11779 to 22019 bits. The remaining

memory will be assigned for the executable code of the user space program, from address space

22020 to 65535 bits. Figure 6.3 below, describes the 16-bit address space with a user space

program in memory.

Figure 6.3: Diagram illustrating the structure of 16-bit address space with a user space program

in memory

Code Compilation process for Cute BASIC

The programming language is a simple BASIC-like statement based procedural language. Cute

BASIC would be translated to machine code through the following process. The Cute BASIC

compiler will translate Cute BASIC to macro assembly language. Thereafter, a macro assembler

will convert the macro assembly language to a low level assembly language. A macro assembly

Page 128 of 312

language is needed as the actual assembly language of the CPU, containing so few instructions

that even the simplest operations require substantial amounts of instructions and as such, the

complexity of the compiler itself can be reduced by offloading some of the compilation to a

program explicitly designed to detail with the peculiarities of the architecture. The assembly

language will consist of only 8 instructions to ensure electrical simplicity. The low level assembly

language will be converted to machine code by the low level assembler. This will result into

executable machine code, which will then be loaded into RAM for the CPU to execute. Figure 6.4

illustrates the process visually.

Figure 6.4: A diagram illustrating the compilation process for Cute BASIC

Page 129 of 312

7. CPU

7.1 Introduction

The Central Processing Unit or CPU of a computer is considered the heart and brains of a computer

and it is tasked with carrying out the instructions laid out by computer programs. The first CPUs

were constructed out of vacuum tubes and relays, which had to be manually programmed by hand;

a far cry from today’s high powered microprocessors capable of high clock speeds and parallel

processing.

A computer processor executes computer programs by performing basic arithmetic, logic, and

input/output operations specified by the programs. In order to execute this, the code must be broken

down into language and instructions that the CPU can understand, this is called “machine code”.

Every processor has a different set of instructions, which it is capable of carrying out and the

machine code must reflect those instructions or the processor will not work correctly.

Today’s modern CPUs are located on single chips with billions of transistors packed inside them,

doing thousands of instructions in the blink of an eye. The Nibble Knowledge CPU is a very

simplified version of these chips, but the main components and methodologies remain the same as

with any other computer processor. It opens the black box and provides a detailed look at each

individual component of what makes up a computer processor and the purpose and reasoning

behind each decision.

7.2 Instruction Set and Architecture

Every computer processor has its own architecture and instruction set. The reason being that this

is how the hardware itself is structured and cannot be changed after it is implemented. This means

that even the Nibble Knowledge CPU has its own architecture as described in this section below.

Memory

The CPU has an on board memory in the form of a 64 kB RAM chip with a 4 bit memory cell size.

For the initial boot up of the CPU, there is an 8 K boot ROM located in the reset circuit that loads

the initial program into the RAM.

Page 130 of 312

Registers

Registers hold values for the CPU to use for various purposes. Modern day processors have many

of these registers for convenience in computation and programing. The Nibble Knowledge

computer however, only has a few essential registers. The table below lists the Registers located

in the CPU and their functions.

Register Width (bits) Comments

PC 16 Program counter; holds current address of next instruction to be

loaded

A 4 Accumulator register used for arithmetic and other operations

MEM 16 Holds the address being used by an instruction at any given time.

STAT 4 layout: (signed overflow bit) XOR with MSB of the A register,

EMPTY, HLT, Carry bit

Table 7.1: Registers Located in the CPU and Their Functions

Instruction Set

The table below lists the eight instructions supported by the architecture of the CPU and their

machine code format and description. This instruction set was developed and testing for the

completeness of the instruction set was done by using a program called CPUsim found at:

http://www.cs.colby.edu/djskrien/CPUSim/

Instruction Format Description

HLT 0000-0000-0000-0000-0000 Halts the CPU

LOD 0001-16-bit address to load from Loads a value from location specified into

the A register

STR 0010-16-bit address to store to Stores the value in the A register into

memory location specified

ADD 0011-16-bit address to add from Adds the value at the location specified, plus

the existing carry flag, into the value in A.

Sets carry and overflow flags as required

NOP 0100-0000-0000-0000-0000 No operation

NND 0101-16-bit address to NAND Bitwise NANDS the value at the location

http://www.cs.colby.edu/djskrien/CPUSim/

Page 131 of 312

from specified into the value in A

JMP 0110-16-bit address to jump to Jumps to location specified by setting the

program counter to that address

CXA 0111-0000-0000-0000-0000 Copies the STAT register into the A

Table 7.2: Machine Code Format and Description of Instruction Set

7.3 The Virtual Machine

The Virtual Machine is a digital simulation of the CPU and its architecture is set to clock accurate

speeds. This was done in order to test the completed peripherals while the discrete portion of the

CPU was being completed, as well as to test the code compiled through the software toolchain to

see how it operates before using it on the discrete CPU. This enabled troubleshooting as it made it

possible to find errors in the macro assembly, logic errors in the peripheral drivers and physical

controllers.

There are two versions of the virtual machine: first is an implementation on a Raspberry PI running

Arch Linux as the main operating system. Written in low level C, the Raspberry PI virtual machine

is a command line program used to gain access to the Raspberry PI board’s GPIO pins to interface

with discrete components and run machine instructions loaded from binary files created by the

assembler. The second version is a windows program with a full user interface written in C#

language, where users can edit and compile macro assembly and test the resulting machine code.

This version is mostly used for software testing and behavioral analysis of the CPU.

7.3.1 The Raspberry PI Virtual Machine

In order to get the virtual machine set up and running on the Raspberry PI, Arch Linux must be

installed first.

Setting up Arch Linux

Note: Arch Linux could also be set up through Noobs!

The implemented set-up process requires more work, and a lot more setup time. However, it does

provide more barebones experience, which should help with accuracy of timings, and accuracy

GPIO lines switching. Also, these instructions are assuming that there is another Linux computer

available for the setup. It is possible to use windows, following this link:

Page 132 of 312

1. With your SD card plugged in, open a terminal on your linux machine and type lsblk, this

shows you the name of the SD card which you will need.

2. Follow the instructions here: http://archlinuxarm.org/platforms/armv7/broadcom/raspberry-pi-

2

3. Once the Pi is on and in the terminal here are the suggested items to install:

a. Install Sudo: pacman -S sudo

b. Create a regular user account: useradd -m -G wheel -s /bin/bash newuser

c. Add user password: passwd newuser

d. You can now logout and login as that user

e. Install most developer tools:sudo pacman -Sy base-devel

i. Verify version of gcc with: gcc -v

ii. Verify make version with: make -v

f. Install Git: sudo pacman -Sy git

g. For nano syntax highlighting (Raspbian way may work, but if not try this)

i. Type: sudo nano /etc/nanorc

ii. Scroll down to near the bottom and find: “include /path/to/syntax_file.nan0rc”

iii. Type: include /usr/share/nano/c.nanorc

include /usr/share/nano/asm.nanorc

4. Required repositories for running the virtual machine

a. sudo pacman -Sy doxygen

b. sudo pacman -Sy graphviz

c. sudo pacman -Sy links

d. sudo pacman -Sy hexedit

e. sudo pacman -Sy openssl

To Change Keyboard Default:

If you are using the Pi with a screen and keyboard and the keyboard is incorrect:

sudo nano /etc/default/keyboard

*go to the thing and make it -> XKBLAYOUT=”us”

Page 133 of 312

Setting up SSH Server for Remote Access (Optional)

1. Download PuTTY from http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html.

2. On the Raspberry Pi, start the SSH Server by typing “sudo systemctl start ssh” into a terminal

window. (If that doesn’t work type in raspi-config and navigate to the SSH settings in the

menu and enable)

3. On the raspberry pi, get the IP address by typing “ip addr” in the terminal.

4. Open PuTTY and in the “Host Name (or IP address)” put the address you just found.

5. Save the session then “Open.” Some error might come up, ignore it.

6. Login with the user you created with Arch Linux

Once Arch Linux is set up the VM can be installed by pulling from the Nibble Knowledge virtual

machine repository on GitHub found at https://github.com/Nibble-Knowledge/cpu-vm or using a

program such as WinSCP to manually place the files onto the Raspberry PI.

To run the virtual machine on the PI, compile it by typing “make” while in the directory, then run

it using “sudo ./vm4”. Then follow the onscreen prompts from the program to operate.

7.3.2 The Windows Virtual Machine

The windows virtual machine is an exact copy of the Raspberry Pi virtual machine, except, it

includes a graphical user interface (GUI) to make it easier to manage. However, it does not allow

for pin outputs. It is more a tool for software to step through the code and observe what happens

to the registers, I/O Ports, Bus, Memory, and even Peripherals. As of this report, the only peripheral

that was virtually added was the hard drive. Hard drive commands could be sent in the same

manner as commands sent to a real hard drive and observe what outputs it returns.

The GUI is built using Microsoft’s Visual Studio in C#. The full project can be found on GitHub.

Currently the features included are as follow:

 Write, edit, and assemble NK4 Assembly and Macro Assembly

 Step through the code at your own pace

 See the CPU Registers, and Main Memory update as you step through the code

 Simulate the NK4 CPU running through code with a given period

Page 134 of 312

 Attach a virtual hard drive that can be written to, and read from (Currently only 1000 sectors in

size)

Figure 7.1: The CPU GUI

The GUI was used to test and debug the IDE driver and saved the endless rewriting of ROM chips

to test on the real CPU. It was also a great visual tool to show instructions running and what the

effect of each instruction was. This was a last minute tool that was created in March 2016 and was

not a part of the original scope. It is not complete, merely a work in progress.

7.4 FPGA Implementation

All parts of the CPU were first designed and simulated using FPGA’s before moving into discrete

components. This allowed to confirm logic and architecture for each distinct block of the CPU and

fix bugs before it was made into a discrete circuit. The main methodologies were consistent

between the two phases and the circuits generated in VHDL were used to create the discrete

versions.

Example 1: A four bit counter for the control unit

-- Counter

process(clk, reset)

Page 135 of 312

begin

 if rising_edge(clk) then

 --if reset = '1' then

 --cycle_counter <= "000";

 if cycle_counter = "101" then

 cycle_counter <= "000";

 else

 cycle_counter <= cycle_counter + '1';

 end if;

 end if;

 if reset = '1' then

 cycle_counter <= "000";

 end if;

end process;

This process counts up by one every clock cycle effectively making 4 bit counter. However since

there are only 6 cycles in the instruction cycle and a 4 bit counter will go up to 15 it needs to be

reset to 0 on the next clock cycle after reaching 5 thus restarting the counter for a new instruction.

This is accomplished by the if else statement inside the rising edge detector to either add ‘0001’ to

the current count or reset to ‘0000’ if the count is at 5.

Example 2: ALU Decode

process(clk)

begin

 if clk' event and clk = '1' then

 --Write op_code into temp storage

 if OP_EN = '1' then

 stored_OP_Code <= OP_Code;

Page 136 of 312

 end if;

 end if;

end process;

-- Decoder Combinational Logic --

-- Active Low WE

WE <= '0' when (stored_OP_code = "0010" and exe = '1' and clk = '1') else '1';

STR <= '1' when (stored_OP_code = "0010" and exe = '1') else '0';

-- HLT

HLT <= '1' when(stored_OP_code = "0000" and exe = '1') else '0';

-- A_EN

A_EN <= '1' when((stored_OP_code = "0001" or stored_OP_code = "0011" or stored_OP_code

= "0101" or stored_OP_code = "0111") and exe = '1') else '0';

-- STAT_EN

STAT_EN <= '1' when(stored_OP_code = "0011" and exe = '1') else '0';

-- JMP

JMP <= '1' when(stored_OP_code = "0110" and exe = '1') else '0';

-- Arith_S

Arith_S <= '1' when(stored_OP_code = "0101" and exe = '1') else '0';

-- Stat_S

Stat_S <= '1' when(stored_OP_code = "0111" and exe = '1') else '0';

-- LOD_S

LOD_S <= '1' when(stored_OP_code = "0001" and exe = '1') else '0';

Page 137 of 312

This is the entirety of the ALU decode block in the VHDL Implementation. The process at the

beginning of the code acts as the OP code DFF and will store the incoming OP code when the

OP_en signal is high. Whatever is stored in the stored_OP_code variable is then used to calculate

the WE, HLT, A_EN, STAT_EN, JMP, ARITH_S, STAT_S, and LOD_S signals in the

combinational logic block without the need for a clock. This simulates the signal running through

logic gates in the discrete circuit following the truth table found in Table ## in the above section.

High Level of the CPU

On a high level, the CPU can be divided into six distinct blocks. These blocks are the Boot Circuit,

the Control Unit, the MEM Register, the ALU, the Program Counter and the I/O circuit. Each one

of these serves an essential purpose in the CPU and each of the six blocks will be explained in

detail further in this section. The high level view of the CPU architecture is shown below.

Figure 7.2: High Level Design of the CPU

Page 138 of 312

The Cycle Control Unit

The CPU completes an instruction every six clock cycles and in order for the CPU to keep track

of where it is in the instruction, it needs a way to count the steps while operating. This is the job

for the Cycle control unit. These 6 cycles are separated into three distinct phases of operation, the

“OP Code” phase, the “Address” phase and the “Execute” phase.

Figure 7.3: Cycle Control Unit of the CPU

OP Code Phase

The OP code phase lasts the first clock cycle of the six cycle sequence and it’s function is to load

the first nibble of the instruction (the OP code) into the register located in the ALU decode.

Address Phase

The next four clock cycles are the Address phase, which loads the next four nibbles of the

instruction (the memory address) into the MEM register.

Execute Phase

The final clock cycle executes the loaded instruction by doing a couple of important operations in

the CPU. First, it disables the program counter so that it does not increment on the next rising edge

Page 139 of 312

of the clock. Next, it switches the address accessing RAM from the PC to the address loaded into

the MEM register. Finally, it sends the EXE signal to the ALU to perform the required instruction

operation. The table below is an overview of the signals. AL denotes an Active Low signal and

AH denotes an Active High signal

Cycle OP_en (AL) MEM_en (AL) PC_EN (AL) EXE (AH)

1 0 1 0 0

2 1 0 0 0

3 1 0 0 0

4 1 0 0 0

5 1 0 0 0

6 1 1 1 1

Table 7.3: Overview of Cycle Control Unit Signals

Using the table above, logic equations were developed for the proper output of each signal; these

equations are:

OPen = A +B +C

EXE = PCen = AB'C

MEMen = A'B'C' + AB'C = B'(A'C'+AC)

The Program Counter

The Program Counter or PC is a register that holds the address of the current instruction in memory.

The PC register in itself is just a normal 16-bit flip-flop. The output of which splits and is outputted

to the memory select mux and also to a 16-bit full adder that increments the PC by one.

Page 140 of 312

Figure 7.4: The Program Counter Circuit

The Memory Register

Since each instruction is based on an OP code and a 4 nibble memory address, the address of the

instruction needs to be stored in order for the CPU to execute instructions. This is accomplished

by the MEM Register. The MEM register block is a modified version of a regular flip-flop register.

Due to the limitations of the memory bus from RAM, this special register had to be designed in

order to load a 16-bit address one nibble at time. When the load input of the register transitions to

logic high, it loads a 4-bit nibble onto the 16-bit Q line starting at the most significant nibble and

moving down a nibble every clock cycle. This process is illustrated in the figure below.

Figure 7.5: Testbench of Two Instruction Cycles of the CPU

Page 141 of 312

As shown by the white waveforms, when load goes to logic high, the MEM register starts to load

nibbles into the register from top nibble to bottom nibble. Load then goes to logic low for two

cycles to allow for the Execute and OP code phases to pass before becoming high again for the

next address.

Figure 7.6: Circuit Schematic of the Memory Register

The ALU

The ALU or Arithmetic Logic Unit is where instructions are carried out in the CPU. It firsts

determines what to do with the data as specified by the OP code and performs the required

arithmetic and sends out the proper control signals to various parts of the CPU.

Page 142 of 312

Figure 7.7: Circuit Schematic of the ALU

ALU Decode

The ALU decode is what tells the rest of the ALU components what to do. On the first cycles of

the 6 cycles it takes to run an instruction, the opcode is saved inside the decode unit (this will be

on the data in line from main memory). The chart below shows which signals each instruction

requires. The only clock driven components in the ALU are the A, opcode (inside the ALU

decode), and STAT registers. Everything is combinational and will basically be running even when

the decoder signals are not specifically assigned. During cycle 6, the execute phase enables and

select signals are turned on based on the opcode, and the instruction is complete.

Instruction WE HL

T

A_EN STAT_EN JMP Arith_S Stat_S LOD_S

HLT 0 1 0 0 0 X X X

LOD 0 0 1 0 0 X X 1

STR 1 0 0 0 0 X X X

ADD 0 0 1 1 0 0 0 0

Page 143 of 312

NOP 0 0 0 0 0 X X X

NND 0 0 1 0 0 1 0 0

CXA 0 0 1 0 0 X 1 0

JMP 0 0 0 0 1 X X X

Table 7.4: Low Level Design of Top CPU Module

Using the logic developed in above table, equations were developed to create the right signals out

of logic for implementation. These equations are:

Aen = C' JMP = ABC'

Sen = A + B' +C' ArithS = A

HLT = A + B + C StatS = AB

WE = A + B' + C LodS = A'B'

These are the equations used in the implementation of the ALU

Figure 7.8: ALU Decode Circuit Schematic

Page 144 of 312

ALU Logical/Arithmetic Operations

The ALU is capable of two operations: a bitwise NAND of the A register with a memory location,

and a 4-bit add. These are combinational circuits as stated above, so they will be running even if

the instruction does not require them.

MUXs/XORs/ANDs

The two XOR gates in the middle of the ALU are used for overflow detection. Even though there

is only an ADD, and most operations will be unsigned, the overflow detection for comparisons

was implemented. After which, XOR the overflow bit with the MSB of the sum and this will

determine whether a number is greater than the other, or less than.

The Bus Interface and Memory

The IO Board holds the CPU’s main memory and the registers for the memory mapped I/O

addresses. This means that this section manages the RAM and the input and output to the bus. This

is accomplished by first taking the 16 bit address line coming into the block and determining if it

was in the lowest three addresses by a chain of NAND gates the output of this logic block is then

used as the enable for a decoder of which the bottom two bits are sent as inputs. This causes the

right DFF corresponding to the bottom two bits to be enabled if the top 14 bits of the address line

are ‘0’ else they are disabled from propagating. Whether the address is in a memory IO spot the

data is always sent to the RAM chip no matter what. To get data from the I/O board the same

bottom two address bits are sent to a 4 to 1 multiplexer that selects either the Data register, Stat

register, Chip Select, or the RAM chip to output back to the CPU.

Page 145 of 312

Figure 7.9: Circuit Schematic of the CPU I/O

Figure 7.10: ALU 4-Bit Adder and NANDer Circuit Schematic

The Reboot Circuit

The reboot circuit works as a way to set the CPU in a known state by sending out a reset signal to

the rest of the CPU while bypassing the hardware to load the initial boot program from the ROM

Page 146 of 312

into the RAM on the IO board. This is accomplished by using a counter that is one bit bigger than

the address lines on the ROM chip. The output of the counter is fed into the ROM and also sent

out to RAM in order to transfer the data at the same address. This continues with the DFF inverting

every clock cycle to simulate the pulsing of WE signal and advancing the counter every two clock

cycles. When the counter reaches the top bit that is not used by the ROM the boot circuit effectively

turns off by isolating itself and the CPU begins to operate normally beginning at a PC of 19.

Figure 7.11: CPU Boot Circuit Schematic

7.5 Discrete Implementation of the CPU

Discrete Implementation used the circuit diagrams developed in the FPGA stage as discussed

above to create the discrete circuits. The circuits were wired using 74LS series IC chips and minor

adjustments had to be made to accommodate the chips available. An example of this would be the

cascading of 4 bit counters in order to make the 12 bit counter necessary for the boot circuit to

operate properly.

Page 147 of 312

Consider the above example more in depth and take a look at how to wire it:

1. First take a look at the data sheet for a 4 bit counter (SN74LS163N) and look at the pin out

diagram as shown below. Taken from http://www.ti.com/lit/ds/symlink/sn74ls163a.pdf

2. Now since it is a 12 bit counter we need 4 of these chips so put 4 of them down one row of

the breadboard.

3. Looking at the pin out diagram we can that the pins for Vcc and GND are pins 16 and 8

respectively. Attach the Vcc pins on chip to the red rail along the side of the breadboard

lanes and attach the GND pins to the blue rail. Do this for each of the 4 chips. These wires

will power the chips.

4. Since we are not using the LOAD functionality of the chip we must wire that pin to the red

power rail on the breadboard so it is a constant high value

5. Next wire the CLR pins together between each chip this will serve as the common reset

6. Since there is a common clock signal to all the counter chips wire the CLK pins together

also

7. Now since the need to cascade the counters so they count properly when moving on to the

next one we need to make use of the two enables present on the chip. When a counter is

full it makes the ripple carry out or RCO pin go into a high state. This means that this pin

should be attached to an enable pin (either ENP or ENT) of the next two chips above it.

8. If all of the previous steps are down correcting the clock and reset signals can now be

hooked up and the counter should operate as a full 12 bit counter outputting on the Q pins

of each chip.

Figure 7.12: Top View of Series 74LS Chip

http://www.ti.com/lit/ds/symlink/sn74ls163a.pdf

Page 148 of 312

7.6 CPU Clock Generator

The clock controls the synchronization of the events of all sequential circuits in CPU, providing

the CPU with a reference to time needed for transferring data, and command execution. A clock

generator outputs a constant frequency which is a usually a square wave that is then distributed to

other devices that need it. The clock oscillates between two different states: low and high at the

specific frequency making it a periodic signal. From math, we determine that the period (T) of the

clock signal by computing
1

𝑓
.

The ideal waveform of the clock signal looks like the figure below

Figure 7.13: Ideal Clock Waveform

The realistic waveform of the clock signal looks like

Figure 7.14: Realistic Clock Waveform

The transition of the clock from 0 to 1 is called the rising edge/ positive edge, while the transition

from 1 to 0 is called the falling edge/ negative edge. Devices are synchronized to perform tasks at

either their falling or rising edges.

Figure 7.15: Positive and Negative Edge of Clock Waveform

Modern computers run at much higher frequencies than the Nibble Knowledge four bit computer.

The Nibble Knowledge computer operates at four different frequencies: 1 HZ, 10 Hz, 100 kHz and

Page 149 of 312

5.00 MHz. The slower frequencies are mainly for visual purposes, so that if a person were to hook

up light emitting diodes (LEDs) to the clock output, one would see lights flashing at that frequency.

Since there was no way to build an oscillator using just one circuit, there are two separate clock

generator circuits controlled by a master switch that alternates between the two.

555 Timer with Select Frequencies

Figure 7.16: Timer Circuit with Select Frequencies

The 555 timer outputs a select frequency based on a different value of capacitor as shown in the

above figure (i.e. if a frequency of 1 Hz is desired we would connect the 10.0 µF capacitor). The

555 timer operates in a-stable mode, outputting a square way with that respective frequency. The

trigger and reset pins on the chip are active low. Trigger starts the 555 timer, when it is triggered,

pin 3 goes high. It is triggered when voltage on this pin is reduced to below one-third of the power

supply voltage. The discharge pin discharges a capacitor; it is used to control the timing interval.

The threshold monitors the voltage across the capacitor, when the voltage reaches two-thirds the

power voltage, the cycle is finished and the output pin goes low. The control voltage is connected

to a small capacitor; the purpose of the capacitor is to reduce any distortion that arises from the

Page 150 of 312

power supply. The three switches controlling the capacitors are called dip switches and their

diagram is shown to the side.

Figure 7.17: The Three Switches Controlling the Capacitor

Vcc is connected to +5.00 V, while GND is connected to ground. Reset pin on the 555 is also

connected to +5.00 V.The output (pin 3) is connected to one of the pins of the toggle switch. One

end of the 10 nF capacitor is connected to the control voltage while the other end is connected to

ground. Tigger and threshold pins are connected together at the same node and a dip switch is

connected between those pins and the capacitor.

 10.0 µF capacitor is connected to 1A; 1B is connected to either trigger or threshold.

 1.00 µF capacitor is connected to 2A; 2B is connected to either trigger or threshold.

 100.0 pF capacitor is connected to 3A; 3B is connected to either trigger or threshold.

 4A, 4B are connected to the crystal oscillator

A 68.0 kΩ resistor is connected between discharge and trigger. The 3.90 kΩ resistor is connected

between reset and discharge.

Figure 7.18: Top View of SA555N Timer Chip

Crystal Oscillator

A crystal is a piece of electrical circuitry that has piezoelectric properties. Piezoelectric means that

when the shape of the crystal is changed (subject to mechanical stress) an electric potential

GND

Trigger

Output

Reset

VCC

Control
Voltage

Threshold

Discharge

Page 151 of 312

(voltage) is formed across the crystal’s terminals. Piezoelectric devices can be classified as

transducers because they convert energy from one form to another. There are many different types

of crystals that can be used as oscillators but one of the most commonly used is the Quartz Crystal

because of its great mechanical strength.

The fundamental frequency of the crystal is determined by its physical properties: the size and

thickness of the element. This frequency is also called the characteristic frequency. Once the

crystal is cut, it can only be used for one frequency and only that one.

Figure 7.19: Image of a Crystal Oscillator

The equivalent circuit diagram for a crystal is shown below:

Figure 7.20: Equivalent Diagram of the Crystal

Figure 7.21: Circuit Symbol of the Crystal

Page 152 of 312

5.00 MHz Crystal Oscillator

Figure 7.22: 5.00 MHz Crystal Oscillator Circuit

The configuration is known as a Pierce Oscillator. In this configuration the crystal operates in

parallel resonance mode. For a crystal to oscillate correctly there are two criteria that must be

satisfied. The criteria, also known as Barkhausen criteria are as follow:

1. The closed loop gain ≥ 1

2. The phase shift around the loop has to be 0 or 360n, where n is an integer multiple.

Figure 7.23: Crystal Oscillator is Parallel Resonance Mode

The purpose of the 5.10 kΩ resistor is to prevent overdriving the crystal by limiting the output. If

a crystal is overdriven there exists a chance that it might become permanently physically damaged.

The feedback resistor, 1.00 MΩ, turns the first inverter into an analog amplifier, to be precise a

Class AB amplifier. The phase shift provided by the first inverter is 180 degrees, the other 180

degrees is provided by the two capacitors and the 5.10 kΩ resistor. The inverter at the output helps

sharpen edges making the waveform more square like.

Page 153 of 312

The Vcc is powered at +5.00 V while GND is grounded. One side of the 1.00 MΩ resistor is

connected to pin A1 of the 74HC4049 inverter the other end is connected to pin Y1. A 33.0 pF

capacitor is connected from pin A1 to ground. One side of the crystal is connected to pin A1, and

the other end is connected to a free node on the breadboard. The 5.10 kΩ resistor is connected to

both pin Y1 of the inverter and the end of the crystal that is connected to a free node. A 33.0 pF

capacitor goes from this node to ground. Pins Y1 and A2 are connected to one another. Y2 is

connected to 4A on the dip switch; 4B is connected to one of the pins of the toggle switch. Both

NC pins are not connected to anything. A3, A4, A5 and A6 are all grounded.

Figure 7.24: Top View of 74HC4049 Hex Inverter

Figure 7.25: Toggle Switch

Page 154 of 312

Complete Clock Circuit Schematic

Figure 7.26: Complete Clock Circuit Schematic

The output, marked on the diagram, of this circuit is connected to the clock input of the CPU.

7.7 Raspberry PI VM and FPGA Code

Below are segments of the Raspberry PI Virtual Machine Code and the FPGA Implementation

Code. These are only snippets and the entire code is attached in the Appendix, section A.2 CPU.

Raspberry PI Virtual Machine Code

#ifndef _VM4_H_

#define _VM4_H_

#define _POSIX_TIMERS

#define __USE_POSIX199309

#if __STDC_VERSION__ >= 199901L

#define _XOPEN_SOURCE 600

#else

#define _XOPEN_SOURCE 500

#endif /* __STDC_VERSION__ */

#include <stdio.h>

Page 155 of 312

#include <stdint.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <limits.h>

#include <unistd.h>

#include <inttypes.h>

#include <time.h>

#include <fcntl.h>

#ifdef RPI

#include <sys/mman.h>

#endif

#include <sched.h>

#define VERSTR "VM4 v0.3"

#define BOOTBIN "test.bin"

#define IOMEM 3

#define BOOTMEM 1024

#define RESERVEMEM (1 + IOMEM + BOOTMEM)

#define NOERROR 0

#define MEMALLOCERROR 1

#define UNKNOWNINSTRUCTIONERROR 2

#define UNKOWNERROR -1

#define MEMADDRSIZE 16

#define MEMSIZE 65536

#define BIGEND -1

#define LITTLEEND 1

#define MEMMODSIZE 4

#define PLATEND LITTLEEND

#define NUMREG 4

#define PC 0

#define A 1

Page 156 of 312

#define MEM 2

#define STAT 3

#define HLT 0

#define LOD 1

#define STR 2

#define ADD 3

#define NOP 4

#define NND 5

#define JMP 6

#define CXA 7

CPU Instruction Set FPGA Code

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity alu_decode is

 Port (exe : in STD_LOGIC;

 OP_EN : in STD_LOGIC;

 clk : in STD_LOGIC;

 clk_fast: in std_logic;

 rst : in STD_LOGIC;

 OP_Code : in STD_LOGIC_VECTOR(3 downto 0);

 WE : out STD_LOGIC;

 A_EN : out STD_LOGIC;

 STAT_EN : out STD_LOGIC;

Page 157 of 312

 HLT : out STD_LOGIC;

 JMP : out STD_LOGIC;

 Arith_S : out STD_LOGIC;

 Stat_S : out STD_LOGIC;

 LOD_S : out STD_LOGIC;

 STR : out STD_LOGIC);

end alu_decode;

architecture Behavioral of alu_decode is

signal stored_OP_Code : STD_LOGIC_VECTOR(3 downto 0);

signal i_WE : std_logic;

begin

process(clk)

--ADD A RESET THAT SETS OPCODE TO NOP

begin

 if clk' event and clk = '1' then

 --Write op_code into temp storage

 if OP_EN = '1' then

 stored_OP_Code <= OP_Code;

 end if;

 end if;

end process;

--process(clk)

--begin

-- --Execute instruction

--

-- if rst = '1' then

-- i_WE <= '1';

-- HLT <= '0';

-- A_EN <= '0';

Page 158 of 312

-- STAT_EN <= '0';

-- JMP <= '0';

--

-- elsif exe = '1' then

-- --HLT

-- if stored_OP_Code = "0000" then

-- i_WE <= '1';

-- HLT <= '1';

-- A_EN <= '0';

-- STAT_EN <= '0';

-- JMP <= '0';

--

-- --LOD

-- elsif stored_OP_Code = "0001" then

-- i_WE <= '1';

-- HLT <= '0';

-- A_EN <= '1';

-- STAT_EN <= '0';

-- JMP <= '0';

-- LOD_S <= '1';

--

-- --STR

-- elsif stored_OP_Code = "0010" then

--

--

-- --if i_WE = '1' then

-- -- i_WE <= '0';

-- --else

-- -- i_WE <= '1';

-- --end if;

--

Page 159 of 312

-- i_WE <= '0';

-- HLT <= '0';

-- A_EN <= '0';

-- STAT_EN <= '0';

-- JMP <= '0';

--

-- --ADD

-- elsif stored_OP_Code = "0011" then

-- i_WE <= '1';

-- HLT <= '0';

-- A_EN <= '1';

-- STAT_EN <= '1';

-- JMP <= '0';

-- Arith_S <= '0';

-- Stat_S <= '0';

-- LOD_S <= '0';

--

-- --NOP

-- elsif stored_OP_Code = "0100" then

-- i_WE <= '1';

-- HLT <= '0';

-- A_EN <= '0';

-- STAT_EN <= '0';

-- JMP <= '0';

--

-- --NND

-- elsif stored_OP_Code = "0101" then

-- i_WE <= '1';

-- HLT <= '0';

-- A_EN <= '1';

-- STAT_EN <= '0';

Page 160 of 312

-- JMP <= '0';

-- Arith_S <= '1';

-- Stat_S <= '0';

-- LOD_S <= '0';

--

-- --CXA

-- elsif stored_OP_Code = "0111" then

-- i_WE <= '1';

-- HLT <= '0';

-- A_EN <= '1';

-- STAT_EN <= '0';

-- JMP <= '0';

-- Stat_S <= '1';

-- LOD_S <= '0';

--

-- --JMP

-- elsif stored_OP_Code = "0110" then

-- i_WE <= '1';

-- HLT <= '0';

-- A_EN <= '0';

-- STAT_EN <= '0';

-- JMP <= '1';

--

-- --Unknown - halt the CPU

-- else

-- i_WE <= '1';

-- HLT <= '1';

-- A_EN <= '0';

-- STAT_EN <= '0';

-- JMP <= '0';

-- end if;

Page 161 of 312

7.8 Testing the CPU

The CPU operates as per the original scope; it operates at 5MHz and is integrated with the audio

peripheral and keyboard peripheral. Tests were conducted to validate each operation and

instruction performed by the CPU. The final CPU design also implements the custom made nibble

knowledge architecture and instruction set, and interfaces with the bus.

7.8.1 FPGA Testbench: MEM Register Block

Figure 7.27: Testbench for CPU MEM Register Block

This testbench shows two instruction cycles of the CPU, depicted by the white waveforms.

1. When the load goes high, the register starts to load nibbles in into the register from the top

nibble to the bottom nibble.

2. The load then goes low for two cycles. This allows for the Execute and OP code phases to

pass before becoming high again for the next address.

Note: The cycles are controlled by the Control Unit, the register has no way of knowing if the

cycles are correct. Also, the address becomes garbage while in the process of loading all for

nibbles.

7.8.2 FPGA Testbench: Control Unit Block

Figure 7.28: Testbench for CPU Control Unit Block

The 16-bit adder is working as expected when the inputs change. Note, this does not have overflow

detection.

Page 162 of 312

7.8.4 FPGA Testbench: CPU Top Level Testbench

Test 1 - add 2 looped

Figure 7.29: Testbench for CPU Top Level Block

This test validates that the Accumulator output is increasing by 2 every 6 cycles as expected. Note:

The A is highlighted in white.

7.8.5 FPGA Test Programs

Test programs were loaded onto a ram chip using a loader developed using the Raspberry PI. This

tested the full functionality and the developed logic of the CPU design, using real machine

instructions. It also proved to be a test for the assembly and macro assembly languages; to see if

they work before moving on to discrete circuits. Here is a sample of some of the test programs and

outcomes achieved.

Test 1:

START:

LOD 3

STR 1025

LOD 4

STR 1026

LOD 5

STR 1027

LOD 6

Page 163 of 312

STR 1028

LOD 7

STR 1029

LOD 8

STR 1030

LOD 9

STR 1031

LOD 10

STR 1032

LOD 11

STR 1033

LOD 12

STR 1034

LOD 13

STR 1035

LOD 14

STR 1036

LOD 15

STR 1037

LOD 16

STR 1038

LOD 17

STR 1039

LOD 18

STR 1040

LOD 3

JMP START

Expected Results: Test 1

Page 164 of 312

The values 1-15 should be in the locations 1025-1040. This was observed after multiple test runs

at 10 Hz, 100Hz, 1 kHz, and 100 kHz

Test 2 (allinst.bin)

19 LOD 4

24 STR 1025

29 ADD 18

34 STR 1026

39 CXA

44 STR 1027

49 LOD 13

54 ADD 11

59 STR 1028

64 CXA

69 STR 1029

74 LOD 14

79 NND 18

84 STR 1030

89 LOD 3

94 JMP OVER

99 LOD 18 ; should never get here

104 STR 1000

 OVER:

109 LOD 15

114 STR 1000

119 HLT

124 LOD 18 ; should never get here

129 STR 1000

Expected Results: Test 2

1000: 12 (Stored 12)

1025: 1

Page 165 of 312

1026: 0

1027: 1 (Just carry is on)

1028: 2 (Result from adding 8 to 10)

1029: 9 (XOR and carry on)

1030: 4 (Result of NAND 11 is 4)

Results matched what was expected after many trials.

Test 3 (whileloop.bin)

int i = 0;

while(i < 8){

 i++;

}

;int i = 0

LOD 18 ;Loads 15 into A 1025

 STR 1200 ;Stores i at 1200 1030

LOOP: LOD 1200 ;Loads i into A 1035

 ADD 4 ;Adds 1 1040

 STR 1200 ;Stores i at 1200 1045

 ;if (7 >= i)

 NND 18 ;Negates i 1050

 ADD 4 ;Twos-Compliment i 1055

 ADD 10 ;Add 7 1060

 CXA 1065

 NND 11 1070

 NND 18 ;AND with 8 1075

 ;Jump if (7 >= i)

 JMP LOOP ;Jump if above true 1080

 HLT ;End function 1085

Page 166 of 312

Expected Results: Test 3

1200: 8

Results matched what was expected.

7.8.6 Discrete Testing

Most of the discrete testing for the CPU was done by creating a program and making sure the

outputs matched. The Raspberry Pi was used as a ROM loader to load programs onto the ROM

chip, and then put that chip back into the discrete circuit. The Pi also had a checker that read back

in the ROM and confirmed if the program was correct before it was used in testing. This eliminated

the possibility that the program loaded incorrectly. To test the programs at slow speeds, an Arduino

was used as the CPU clock. This sped up the boot up (around 16000 clock cycles) and allowed

stepping through the program as it was run; the Arduino outputted a clock pulse every time the

enter key was hit on the connected computer. The code for this is shown below. The code for the

ROM loader can be found on GitHub with the name “FPGARAM”.

int Delay = 1;

void setup() {

 // put your setup code here, to run once:

 pinMode(12, OUTPUT);

 pinMode(5, INPUT);

 digitalWrite(12,LOW);

 Serial.begin(9600);

}

void loop() {

 // Reset the CPU by sending a clock pulse then

 // informing user to release the reset button:

 digitalWrite(12, HIGH);

 delay(1);

 digitalWrite(12,LOW);

 Serial.println("LET GO");

 delay(4000);

Page 167 of 312

 //Skip through boot up

 for(int i = 0 ; i < 16383 ; i++){

 digitalWrite(12, HIGH);

 delay(Delay);

 digitalWrite(12,LOW);

 Serial.println(i);

 }

 //Used to step though additional clock cycles if need be

 for(int i = 0; i < 0; i++){

 digitalWrite(12, HIGH);

 delay(1);

 digitalWrite(12,LOW);

 Serial.println(i);

 }

 //Pulse clock when any key pressed

 while(1){

 Serial.flush();

 while(!Serial.available()) ;

 digitalWrite(12, HIGH);

 delay(Delay);

 digitalWrite(12,LOW);

 delay(Delay);

 Serial.read();

 }

}

To ensure everything matched expectations, the above “allinst.bin” program was run; it checked

the outputs with a multi-meter or LEDs. This took a long time, and there were many wires that

were plugged in backwards, or one hole off.

The peripherals and bus were integrated, once it was confirmed that the CPU ran every instruction.

Audio was tested first, as it was an easy driver to write; simply send a value and a sound would

Page 168 of 312

play. There were a few issues with this peripheral. The keyboard was then added to play a sound

based on the key pressed. Similar to the audio, the keyboard was not too difficult to implement.

However, adding peripherals beyond that became much more challenging. The hard drive required

very time and level sensitive data, and VGA itself was very inconsistent. The hard drive worked

occasionally, and the VGA worked well. For more information, refer to their respective sections.

Serial was tested with an FPGA, it successfully received data from the discrete CPU. Due to time

constraints, the discrete implementation was not integrated.

Many other programs were tested to verify that other parts of CPU worked. For example, a program

was loaded at address 50000 of the RAM to make sure this would work and found two high address

lines crossed. Programs were loaded that jumped from low to high addresses. These worked as

expected.

7.10 CPU Specifications

Component Specifications

Clock Frequency 5 M Hz with variable 1 Hz, 10 Hz, 100 kHz

Data Bus 4-bits

Chip Select 4-bits

Parity Check 1-bit

Ready 1-bit

Write 1-bit

Read 1-bit

Register A 4-bits

Register STAT 4-bits

Register MEM 16-bits

Register PC 16-bits

Register OP 4-bits

Memory 64 kB

Input/output Memory Mapped I/O

Bus Protocol Master-Slave Protocol

Clock Circuit Voltage 5.00 V

Table 7.5: CPU Specifications

Page 169 of 312

8. Audio Controller

8.1. Introduction

The Personal Computer (PC) Audio Controller, which is also known as the sound card in a modern

day computer, is a removable computer expansion card, which, under the control of computer

programs can input and output sound. The purpose of the sound card is to provide the audio for

applications such as games, movies and music. The audio controller in the case of the Nibble

Knowledge computer consists of two separate circuits, whereas a sound card only consists of one

mode. The typical audio controller/sound card consists of a digital-to-analog converter (DAC),

and the signal is led to a connecter, where an amplifier can be plugged in. Prior to the invention of

the sound card, the only PC software that could produce music and sound was the internal PC

speaker, which could only output beeps.

An audio controller was first developed and marketed by Adlib in 1989; the other producer was

Creative Labs, a company which is still the best-known sound card manufacturer in the world.

Creative Labs produced a line of cards known as the sound blaster, which have set the standard for

sound cards today. The first developed sound cards were huge, and the volume controls were on

the cards itself. The user had to reach behind the PC to change the volume. In modern computers,

the same technology used to build these sound expansion cards is directly integrated within the

computer itself.

The Low-Level design of the Audio Controller could be broken down into five major components

as shown in Figure 8.1 below. These components are the Latch, Digital to Analog Converter

(DAC), Variable Clock, Amplifier and lastly, the Speaker. The Bus is the interface that enables

communication between the CPU and the Audio Controller, along with ensuring appropriate

communication standards are met. The CPU and the BUS are not the domains of the Audio

Controller

Figure 8.1: High Level overview of the Audio Controller

Page 170 of 312

8.2 The Latch

As learned in the earlier chapter of Combinational and Sequential Logic, latches are very useful

devices. A latch is an array of D flip-flops. One of the many applications of a latch is to act as a

holding register that stores incoming data from the CPU’s data bus. The latch is used to ensure that

the correct data is sent down the bus at the correct time, which is every 125 microseconds (μs).The

latch used in the Nibble Knowledge audio controller is CD4508BE. CD4508BE is a CMOS 4-bit

dual latch, hence, for the purposes of the 4-bit computer, only one side of the latch will suffice.

The diagram below shows the used pins of the integrated circuit. The red rectangles indicate the

necessary pins while the green rectangle indicates the three pins that are grounded in the actual

circuit.

Figure 8.2: Top View of the CD4508BE Latch Chip

All digital components of the audio controller circuit have a positive voltage of 5.00 V, thus the

latch is also powered with 5.00 V. A capacitor of 100 nF is included in the circuit schematic

between VDD and VSS to filter out noise from power supplies. VDD is powered with 5.00 V while

VSS is connected to the ground. The data lines plug into pins D0A, D1A, D2A, and D3A

respectively, while the output of the latch are Q0A, Q1A, Q2A, Q3A respectively.

The table below is a truth table for the CD4508BE Chip. It shows that for Side A (left side of the

chip in Figure 8.2) of the latch to work, disable must be connected to the ground while strobe is

connected to the positive output of one of the two-input AND gates. The following logic ensures

that the latch is being strobed at the correct time and data is being sent further down the circuit.

The green shaded row shows that to disconnect the B side of the latch, the reset, disable and strobe

must be connected to the ground.

555 Timer Ca lculator | House of Jeff
http://houseofjeff.com/555-timer-oscillator-frequency-calculator/
Screen clipping taken: 08/10/2015 8:13 PM

SchemeIt | Free Online Schematic Drawing Tool | DigiKey Electronics
http://www.digikey.ca/schemeit/#
Screen clipping taken: 03/10/2015 6:16 PM

SchemeIt | Free Online Schematic Drawing Tool | DigiKey Electronics
http://www.digikey.ca/schemeit/#
Screen clipping taken: 03/10/2015 6:15 PM

Page 171 of 312

Truth Table for the CD4508BE

Reset Disable Strobe D Input Q Output

0 0 1 1 1

0 0 1 0 0

0 0 0 X LATCHED

1 0 X X 0

X 1 X X Z

Table 8.1: Truth Table for the CD4508BE Latch chip.

The Chip Select (CS) is connected to 1A of the 7404 chip, the output, 1Y is connected to 1B of

the AND chip. All other inputs are connected to the ground. VCC is connected to +5.00 V, while

GND is connected to ground.

Figure 8.3: Circuit Schematic of Chip Select and Write Control Line

1A is connected to the write control line (W). In the Hex Inverter 7404 Chip, pin 1Y is connected

to 1B on the 7408 AND chip. All other inputs are connected to the ground.

Figure 8.4: Top chip view of the 7404 Hex Inverter Chip

In the 7308 AND chip, the 1Y pin on the AND chip is connected to strobe on the CD4508BE

Latch Chip.

Page 172 of 312

Figure 8.5: Top chip view of the 7408 AND Chip

The Reset can be hot-wired to ground, or one can also manually reset the circuit by adding a simple

circuit shown below and connect it to the reset pin on the latch.

Figure 8.6: A Simple Reset Circuit

8.3 Digital to Analog Converter (DAC)

A digital-to-analog converter or DAC are devices that take digital data (usually binary) and convert

that data into analog signals (current, charges or voltage). DACs are found in audio devices (CD

players, digital music players and PC sound cards), and video devices.

One of the very first DACs were not electronic, in fact, it were hydraulic. First developed in the

time of the Ottoman Empire in Turkey, DACs built to meter water; functionally, it was an 8-bit

DAC. Instead of taking digital signals as input, it took a manual input, and a “wet output.” It is

believed to be the world’s oldest digital-to-analog converter.

Page 173 of 312

Figure 8.7: The First Digital to Analog Converter System

The primary driving force for the invention of converters was in fact the digital computer. Prior to

the 1950s, converters were developed and only used for specialized tasks such as message

encryption systems of World War II. The only technology available to build the converters was

vacuum tubes, making the converters expensive, huge and inefficient. There was no commercial

usage. However, with the invention of the transistor in 1947, the converter’s capability increased

drastically, making it smaller, efficient and more powerful. Commercial usage of the DAC became

more prevalent, with applications in measurements, medical imaging, audio, computer graphics,

even modems and wireless infrastructure. There are many types of digital-to-analog converters,

one of which is mentioned in this text.

Generally, DAC devices do not contain clocks. The clock is associated with the CPU; the CPU

sends both the clock and the digital data to the DAC. According to Nyquist’s Theorem of

Digitization, in order to properly replicate the signal: fS =2 fm, where fm is the maximum frequency

of the signal and fS is the sampling frequency. Since the quality of the system is not required to be

very high, the maximum frequency of a telephone which is around 4 kHz is sufficient to meet the

objective. Thus, in this audio controller system fS ≅ 8 kHz will suffice in recreating the signal

without significant data loss. This results in the sampling time being tS = 125 µs (microseconds).

The circuit used to implement the DAC is the binary-weighted resistor. It is a simple design with

an operational amplifier, (in short referred as op-amp) already integrated into the design. The op-

Page 174 of 312

amp amplifies the signal which is then further amplified by the amplifier circuit at the output of

the op-amp. One of the major disadvantages of the binary-weighted resistor circuit is that there

needs to be high precision in small resistor values, two ways around that would be to use resistors

with 1% tolerance and potentiometers, rather than using resistors with 5% tolerance. This

disadvantage would be more prevalent in higher resolution systems, but for the current design

objective, the difference is negligible. Note: the resistor values were chosen arbitrarily.

Figure 8.8: Circuit Schematic of the DAC

A standard LM741 Op-amp was used in the circuit implementation. Typically the op-amp would

be powered with a positive and negative voltage (+12V and – 12V). In this case, V+ is powered at

+12.0 V while V- is directly connected to the ground. To compensate for the single-ended power

supply, a virtual ground had to be constructed, and it was must to include resistors at the non-

inverting input.

Top View of LM741

Figure 8.9: Top View of LM741 Operational Amplifier Chip

Page 175 of 312

Below is a table that represents digital bits and the corresponding analog values of the digital-to-

analog converter.

Digital Analog

D3 D2 D1 D0 Vout (-V)

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 10

1 0 1 1 11

1 1 0 0 12

1 1 0 1 13

1 1 1 0 14

1 1 1 1 15

Table 8.2: Digital bits and the corresponding analog values

The smallest resistance is the most significant bit, which is 2.00 kΩ (2.00 kΩ is the Q3A output

from the latch).

The advantages of this DAC are that it is very simple from a hardware implementation perspective

and the conversions are fast. The disadvantages are that the large range of resistor values require

high precision and the circuit has small switch resistance.

8.4 Amplifier Circuit

As the name suggests, an amplifier is a device that increases the volume of the sound so that it

could be heard through a speaker. It is the last step in the process of sound moving from the input

to the output. Some applications of amplifiers are in public address systems and concerts. A man

Page 176 of 312

by the name of Lee De Forest developed the very first audio amplifier in 1906. It used a triode

vacuum tube which consisted of three elements. The triode was designed to modulate the sound

by adjusting the movement of electrons moving from a filament to a plate.

Introduced in 1946, the Williamson amplifier, which uses vacuum tubes was considered top of the

edge, producing higher quality sound compared to its competition. Most modern audio amplifiers

are called solid state transistors, they offer high efficiency and convenience, the only downside is

that they could not replicate the quality of those amplifiers made with vacuum tubes. This was due

to distortion, called intermodulation distortion, caused by the rapid increase of voltage in the output

device. Intermodulation distortion is no longer a concern in audio amplifiers.

Figure 8.10: Circuit Schematic of the Amplifier Circuit

The amplifier circuit is used for amplifying the sound intensity. The amplifier circuit being

implemented is a Complementary Power Amplifier circuit with Driver and Auto-bias. This circuit

has an advantage of offering outstanding thermal compensation. Changing the 10.0 kΩ

potentiometer value, it is possible to increase or decrease the intensity of the sound. The amplifier

circuit consists of a complementary pair of NPN and PNP transistors. In this case, TIP31 and TIP32

were the chosen transistors but any complementary pair (similar to the TIP31 and TIP32) would

Page 177 of 312

suffice. The 2N2222 transistor acts as pre-amplifier driver for the complimentary pair of

transistors. All three transistors in the amplifier must operate in the active region because the output

signal must follow the input signal, multiplied by amplification constant. If a transistor happens to

go into saturation mode even for a brief period of time, the output signal (at the speaker) will be

clipped and distorted, which means the output does not properly follow the input signal. The design

incorporates 2.20 Ω resistors, which are bigger than resistors that are normally used because the

resistors have to be able to tolerate a higher current. Focusing on a small section of the circuit

shown below it may be assumed that the speaker impedance is approximately equal to 4.00 Ω. The

power going through the resistor can then be calculated as:

Figure 8.11: Enlarged Section of the Amplifier Circuit

𝑅𝑇 = 2.2 + 4

𝑅𝑇 = 6.6 Ω

𝑉 = 𝐼 × 𝑅

𝐼 =
𝑉

𝑅

𝐼 = 1.00 𝐴

𝑃 = 𝐼 × 𝑉 = 𝐼2𝑅

𝑃 = 1.02 × 2

𝑃 = 2.0 𝑊

The entire amplifier circuit is powered by a single ended power supply, when there is no signal at

the DC component at Point A (Figure 8.10), the voltage should be close to Vcc/2 V. Because it is

a single-ended supply a 470 µF capacitor must be used to block the DC current from passing

through the speaker. The 470 µF capacitor that is connected between Vcc and the ground is used

to block noise from the power supply. As shown in the enlarged section of amplifier circuit, the

Page 178 of 312

470 µF capacitor connects to the orange wire in the below image. The black wire is connected to

ground.

Figure 8.12: Capacitor and Ground Wire connected with the Speaker

The driver and speaker should have the same impedance to ensure maximum energy transfer. In

reality, for the Nibble Knowledge project, it is not critical to ensure maximum energy transfer,

because at the end, the objective is to only hear some sound and maximum energy efficiency is

not a concern. Point B (Figure 8.10) moves either towards Vcc or ground to ensure that the speaker

is provided with a continuous alternating signal.

The three transistors have the following configuration:

1: base
2,4: collector
3: emitter

1: base
2,4: collector
3: emitter

1: emitter
2: base
3: collector

(A) TIP31 (B) TIP32 (C) 2N2222A

Figure 8.13: Configuration and Circuit Diagrams of Three Transistors

Page 179 of 312

8.5 Variable Clock

Variable Clock Oscillator is a very simple circuit that is designed to change the frequency of the

sound. It requires a constant input from the bus. It consists of a circuit that sets a controlled

frequency, a down counter and another frequency divider made using a chip. The controlled

frequency is set at a value of 22.4 kHz that is sent to the counter and based on the data bits sent to

the counter, the frequency is ‘divided’ by the value of the bits. It may be said that the counter is

preset by the value of the 4-bit data lines. The frequency is then ‘divided’ in half, this is to ensure

the pitch is within the audible range, so a person can hear; it also serves the function to make the

signal have a 50% duty cycle. A 50 % duty cycle means that the high and low levels of the signal

are equal in time duration. The variable clock circuit is controlled by a switch that is located at the

top of the potentiometer. When the toggle switch is turned in one direction, the other mode is

connected (i.e. when the switch is turned to the DAC side, the variable clock oscillator is connected

to the rest of the circuit.)

Figure 8.14: Toggle Switch Configuration

Figure 8.15: Controlled Frequency and Down Counter Circuit

Page 180 of 312

Wires have to be soldered onto the pins of the switch. Vcc is connected to +5.00 V, while GND is

connected to ground. Reset pin on the SA555 is also connected to +5.00 V. The output (pin 3) is

connected to the down pin on the SN74193 down counter. One end of the 10 nF capacitor is

connected to the control voltage while the other end is connected to ground. Tigger and threshold

pins are connected together at the same node and a 1nF capacitor is connected between those pins

and ground. A 6.80 kΩ resistor is connected between discharge and trigger. The 51.0 kΩ resistor

is connected between reset and discharge.

Figure 8.16: Top View of the SA55N Timer Chip

Vcc is connected to +5.00 V, while GND is connected to ground. Up is also connected to +5.00

V. The outputs; pins QA, QB, QC, and QD are left floating. The down pin is connected to the

output pin of the 555 timer. Clear is connected to ground. BO and load are connected together and

the load is connected to the clock of the D flip-flop. The inputs to the chip are A, B, C and D are

they are connected to their respective data lines.

Figure 8.17: Top View of the SN74193 Preset Counter Chip

GND

Trigger

Output

Reset

VCC

Control
Voltage

Threshold

Discharge

Page 181 of 312

In the SN74193 Preset Counter Chip, the data lines are connected to A, B, C and D as follows:

• A = Q0

• B = Q1

• C = Q2

• D = Q3

Vcc is connected to +5.00 V, while GND is connected to ground. The load of the counter chip is

connected to the clock of the D flip-flop (1CLK). 1Q̅ is connected to pin 1D. 1Q is connected to

one of the inputs of the 2-input AND. 1CLR̅̅ ̅̅ ̅ and 1PRE̅̅ ̅̅ ̅̅ are both connected to high. 2CLR̅̅ ̅̅ ̅ and

2PRE̅̅ ̅̅ ̅̅ are both connected to low.

Figure 8.18: Top View of the 7474 D Flip-Flop Chip

The table below shows the bit pattern and the calculated frequency for that bit pattern.

Bits Calculated Frequency (Hz)

1111 746.7

1110 800

1101 861.5

1100 933.3

1011 1.018 kHz

1010 1.120

1001 1.244

1000 1.4

0111 1.6

0110 1.867

0101 2.24

0100 2.8

0011 3.733

0010 5.6

0001 11.2

Page 182 of 312

0000 10.2

Table 8.3: Bit Pattern and Corresponding Frequency

Sample calculation:

Using a base value of 22.4 kHz, following formula could be used to calculate the frequency at

the output of the d flip-flop. Below, the calculation uses bit value of 16.

=
𝑏𝑎𝑠𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

2 × 𝑏𝑖𝑡𝑠

=
22400

2 × 16

=
22400

32

= 700 Hz

The zero bits can be heard, but it is a very high-pitched sound, so by adding a simple circuit as

shown below, it is possible to simply shut off the audio controller completely. The OR gate passes

1 when at least 1 bit is a 1 and a zero whenever all bits are zero. The AND in front of the OR gate

passes a zero whenever the output from the OR is a zero, this is the same as OFF, otherwise it

passes a 1 when both the output from the flip-flop is a 1 and the output from the OR is also a one.

Figure 8.19: Data Lines from the Latch to the Output D Flip-Flop Circuit

Page 183 of 312

Vcc is connected to +5.00 V, while GND is connected to ground. Pins 4A and 4B are connected

to ground. Output from latch (Q0) is connected to 1A; output from latch (Q1) is connected to 1B.

Output from latch (Q2) is connected to 2A; output from latch (Q3) is connected to 2B. 1Y is

connected to 3A, and 2Y is connected to 3B. 3Y is connected to one of the inputs to the AND gate.

Pins 4A and 4B are connected to ground.

Figure 8.20: Top View of the 7432 OR Chip

Vcc is connected to +5.00 V, while GND is connected to ground. 1A is connected to pin 3Y on

the OR chip. The Q output (D flip-flop mentioned above) is connected to 1B. 1Y being the output

of the variable clock circuit is connected to the switch. Pins 2A, 2B, 3A, 3B, 4A and 4B are all

connected to ground.

Figure 8.21: Top View of the 7408 AND Chip

8.6 The Final Product

The Audio Controller final circuit schematic consisting of the Latch, Digital to Analog Converter

(DAC), Variable Clock, Amplifier and lastly, the Speaker is shown below:

Page 184 of 312

Figure 8.22: Final Circuit Schematic of the Audio Controller

As the name implies, the audio controller outputs sound based on inputs from the CPU. It has the

capability of not only outputting simple beeps but also melodies such as He’s a Pirate from Pirates

of the Caribbean, the Star Wars theme song and Vangelis’ Chariots of Fire. For the audio controller

to play complex melodies, data must be stored in computer memory and then sent to the latch,

otherwise for the debugging circuit it is not necessary for data to be stored.

For the debugging mode of the audio controller, the product while capable of changing pitch, does

not increase the volume of the sound automatically because the pitch is not encoded in the bits. It

must be changed manually by adjusting the potentiometer. For the sound card mode, both the pitch

and the intensity of the sound are encoded in the bits from the CPU.

The current design is one of the simplest ways to design the audio controller. There are other ways

to design the DAC, and the binary-weighted resistor is the easiest and most straightforward. There

are different ways to make the input circuit, however, the functionality changes. If the circuit were

to be changed to add a few more components, the intensity of the sound could be changed.

8.7 Testing the Controller

The measure of success for the audio controller is its ability to successfully communicate with the

CPU and output sound through the speaker. The audio peripheral is connected to the CPU via three

4-bit lines, which are the data lines, status lines and chip select lines. In the final design, the audio

controller circuits are implemented and verified. The audio controller was verified through discrete

implementation and it successfully outputted sound through speakers.

Page 185 of 312

Tests that confirm the discrete implementation of the CPU, audio and PS/2 keyboard are

considered to be relevant. Specifically, tests were conducted to verify the capturing of data from

the keyboard and sending it to the audio through the CPU. Tests that use the CPU to send data to

the audio are also relevant, as they showcase the audio controller’s ability to output sound.

Over twenty tests were performed on the audio controller. The first few tests were done on

components as the circuit was built. The component tests were conducted using a 9.00 V battery

as the power supply.

The most significant tests performed are listed as follows:

 The first test was testing the amplifier circuit by itself. An mp3 player was hooked to the

circuit and a song was played over the cable. The test confirmed that the amplifier worked

as intended.

 The second test was performed on the op-amp and amplifier circuits.

 The third test was the last test performed with the 9 V battery; at this point the entire circuit

was completed. The audio circuit itself wouldn’t work without an input from the “data

bus”. As such, an oscillator circuit was constructed using a SA55N timer circuit and 4520

counter. The complete oscillator circuit is shown in the Appendix A1. Prior to testing with

the power supply, which has its own separate +5.00 V line, a voltage regulator chip was

included to reduce the +12.0 V to +5.00 V.

 The third last test was performed using a PC ATX power supply. The oscillator circuit was

used to send a signal into the audio circuit. For this test, capacitors were connected in

parallel to remove noise generated by the power supply. The capacitors were not necessary

for the battery tests because the battery is stable. The output on the oscilloscope should

look like a saw-tooth waveform, and this was verified.

 The next test removed the oscillator from the circuit, and hooked up a virtual machine made

with a raspberry pi. The strobe input pin of the latch was connected to the clock pin of the

raspberry pi. Data lines from audio were connected to the data pins on the raspberry pin.

Code one in Appendix A1 was used to test only the audio peripheral. It worked as well.

 Testing the audio circuit separately, an Arduino was used as an input to the input circuit.

The program was a counter designed to count up to 15. It was supposed to test the variable

Page 186 of 312

clock circuit that has been designed to change the pitch of the sound. The digital pins 2 –

5 for the data lines, 7 as enable, 8 as parity, and 9 as write were used. This circuit worked

as well.

 Using an Arduino, two peripherals were hooked up: the audio and the keyboard. The test

was setup to emit sound when a button was pressed; when another button was pressed,

another pitch was heard. This test also worked.

 The hard drive and the audio peripheral were hooked up. Bit patterns were stored on the

hard drive, and then the hard drive was read and patterns were sent to the audio peripheral.

This was performed using an Arduino. This test also worked.

 The finals test were conducted on the discrete versions of the audio controller and the CPU;

a program was loaded onto the ROM chip. The program outputted data through the data

lines and into the audio; and both the CPU and the audio controller performed their tasks

accordingly. This test was performed several times to verify the consistency of the results.

The final result confirmed it worked correctly.

 The last test also tested the discrete version of the audio controller, the CPU and the

keyboard. The program loaded onto the ROM read inputs from the keyboard and sent the

corresponding bits to the audio. Every time a different key was pressed, there was a

different pattern of bits sent. This test was also performed several times to test the

consistency of the results. The final result confirmed it worked correctly.

8.8 Controller Specifications

Component Specifications

Digital Component Power Supply 5.00 V

Analog Component Power Supply 12.00 V

Table 11: Audio Controller Specifications

Page 187 of 312

9. IDE Controller

9.1 Introduction

A hard drive is a non- volatile mass storage device. It can be used to store files without the risk of

losing them when power is turned off. It is used for storing and retrieving digital information, and

is responsible for storing all content of a computer from files, programs, to operating systems.

Hard drives are much slower than other types of memory such as RAM/ROM, but have

significantly higher capacities. The cost of hard drives is also much lower per GB, compared to

other types of memory. Currently, a 1TB hard drive is around $60 CAD, and a 4GB RAM chip is

$50 CAD.

The disadvantage of a hard drive is its memory. CPU caches and RAM have a high speed memory

that is much faster than the magnetic storage of a hard drive. However, it would be extremely

expensive to build a high capacity drive out of such memory. In the case of the Nibble Knowledge

CPU, the latency of a magnetic disk is actually fast enough to keep up with the slow speed that our

CPU runs at.

9.2 The IDE Cable and Pin Layout

Integrated Drive Electronics IDE), is also commonly known as PATA, Parallel Advanced

Technology Attachment. The IDE/Parallel ATA cable is a 40 pin cable that transfers data in

parallel to the hard drive. It is an interface standard used for the connection of storage devices in

computers, and is usually used as an internal computer storage interface.

The pin layouts for the IDE cable are shown below, we will ignore the signals that are not used for

simplicity’s sake.

Figure 9.1: IDE 40 Pin Cable

Below is a table that describes the 40 Pins on the IDE, along with the Signal and usage

Pin Signal Use

1 Reset Low enabled reset

2 Ground

3-18 Data lines 0-15, (Not in that order) Used to transfer data over the interface

19 Key Empty to show user the orientation of cable

connector

Page 188 of 312

20 Ground

21 DDRQ Not used in NK4

22 Ground

23 DIOW Pulse to write data

24 Ground

25 DIOR Pulse to read data

26 Ground

27 IORDY Not used in NK4

28 Cable Select Not used in NK4

29 DMACK Not used in NK4

30 Ground

31 INTRQ Not used in NK4

32 IOCS16 Not used in NK4

33 DA1 Register address 1

34 PDIAG Not used in NK4

35 DA0 Register address 0

36 DA2 Register address 2

37 CS1FX Chip select, used for high bits of register address

38 CS3FX Chip select, used for high bits of register address

39 DASP Not used in NK4

40 Ground

Table 9.1: IDE 40 Pin Assignments and Description

9.3 The IDE High Level Design Overview

The interface between the Nibble CPU and the hard drive takes four bits at a time and saves each

one until there are five nibbles saved, and then executes the DIOR/DIOW pulse. This is

implemented with five 4-bit registers, and a timing control unit that enables one of them at a time.

For a read, it was necessary to hold the DIOR line low until all four nibbles had been sent to the

CPU, and then raise it again. The top level design is shown below.

Page 189 of 312

Figure 9.2: IDE High Level Circuit Schematic

In the figure above, the blue line indicates a signal that leads to the CPU and the green line indicates

signals going to the hard drive. The bottom multiplexer (MUX) controls which 4-bits are coming

from the hard drive on a read and have to be sent to the CPU, if it is a write, then this is turned off.

The enables coming from the cycle control unit are not shown, but they would connect to each

enable on the five registers. The cycle control unit is essentially a decoder, a counter, and a bit of

combinational circuitry. It takes in the CPU bus signals and decides which enable to activate and

whether or not the command is a read or a write from register command. The discrete circuit shown

below refers to more specific information on the IDE interface implementation.

Page 190 of 312

Figure 9.3: Low Level Discrete IDE Controller

9.4 IDE Controller and Hard Drive Communication

Communicating with the hard drive over the IDE cable has very specific requirements as per the

ATA Standards. If the timing is incorrect, or the combination of signals sent do not match what

the hard drive expects, an error occurs. The hard drive works by having a bank of communication

registers that the user talks to over the IDE interface. This bank of registers serve as a barrier to

the physical disk to prevent a computer from doing things it shouldn’t. There are two types of

registers: command block, and control block registers. In this design, control blocks will be ignored

since they are never used by the IDE driver. The registers are described in the table below.

Command Block Registers

Register

Register

Name

/CS1 /CS0 A2-

A0

Usage Register Details

$0 16 bit I/O

data

register

1 0 000 Used for all data block

transfers from and to the

IDE device

Read and write

sector data words to

Page 191 of 312

and from this

address

$1 Error

register

1 0 001 Contains the status from the

last command executed by

the drive. It can be used to

read Error code

It is only valid or

only reads this

register when an

error is indicated

“ERR=1” in the

IDE Status register

$2 Sector

Count

1 0 010 Number of sectors to

transfer

This is hard coded

as 1 in the IDE

driver

$3 Sector

Number

1 0 011 Contains sector address

(0:7) of the LBA

Address lines used

to specify where to

read a sector from
$4 Cylinder

Low

1 0 100 Sector bits (8:15) of the

LBA

$5 Cylinder

High

1 0 101 Contains bits (16:23) of

LBA

$6 Drive/

Head

 110 Sector address

LBA (24:27)

$7 Status

Register

1 0 111 Contains either the drive

status or the controller

status. It Sends command to

the drive when written to.

And provides drive status

when it is read.

Table 9.2: IDE Command Block Register Description

There are 20 signal lines between the hard drive and the IDE interface. Four register address lines,

(the CS1/CS0 are never on at the same time so they are just the NOT of each other), and 16 data

lines. To perform a register read or write you must follow the following steps:

1. Set the 4 register address lines to the desired register to read/write from

2. If you are writing to this register, set the data lines to the desired value. If you are reading you can

ignore this step

3. Pulse the DIOR signal for a read, or the DIOW signal for a write. While the DIOR signal is low,

the data in the register shown on the address lines is forced onto the data lines.

Page 192 of 312

These steps become a little more complicated when you add in the fact that you can only send 4

bits of data at a time as will be explained later.

9.5 IDE FPGA Implementation

The above design was implemented on an FPGA to test whether the idea would work in practice.

It was completed and test benched, but due to logic level differences between the FPGA and the

CPU (3.3V to 5V), and time constraints on making bi-directional level shifters, we were not able

to test properly with the CPU. Since the design was relatively simple, we instead rushed to discrete

to begin testing that. The entire VHDL code can be found on the Nibble Knowledge GitHub page.

Below is the VHDL code for the cycle control unit. As seen in this code, the process counts when

a falling edge of ‘R’ or ‘W’ from the CPU is detected. It also resets when it has finished a complete

cycle, i.e. when the counter reaches ‘100’. When the VHDL code was written, the IDE interface

was only using 8 data lines, so there were only 3 registers to load: the address bits, d_high, and

d_low. The signal i_ready is used to tell the rest of the system that the registers have been loaded

and the DIOR/DIOW signals can be pulsed. The last three lines of the if statement (prev_W

<=W… wr_prev <= prev_W & prev_R) are used as a falling edge detector. The previous values

of ‘R’ and ‘W’ from the CPU are compared to the current values to check if prev = ‘1’, and current

= ‘0’. The cycle_counter value is used to determine which register enables are activated. Below is

a segment the FPGA Implementation Code. This is only a snippet and the entire code can be found

on the Nibble Knowledge GitHub page.

process(clk, reset, R, W)

begin

 if rising_edge(clk) and CS = '0' then

 if prev_W = '1' and W = '0' then

 cycle_counter <= cycle_counter + '1';

 if cycle_counter = "100" then

 cycle_counter <= "000";

 end if;

 elsif prev_R = '1' and R = '0' then

 cycle_counter <= cycle_counter + '1';

 if cycle_counter = "100" then

 cycle_counter <= "000";

 i_ready <= '0';

 end if;

 elsif prev_R = '0' and R = '1' then

 if cycle_counter = "011" then

Page 193 of 312

 i_ready <= '1';

 end if;

 end if;

 prev_W <= W;

 prev_R <= R;

 wr_prev <= prev_W & prev_R;

 end if;

 if reset = '1' then

 cycle_counter <= "000";

 end if;

9.6 IDE Discrete Implementation

The discrete version of the IDE interface follows the high level diagram that was shown in Figure

9.2 above. The only differences are that a few more parts were added since one discrete component

cannot complete all the tasks required from the control unit box. The discrete circuit was built

entirely from SN74 LS chips. Propagation delays were all measured and are well within required

time for the circuit to work without race conditions. As described earlier, the circuit works by

receiving 5 nibbles of data and then pulsing DIOR/DIOW depending on which is required.

Figure 9.4: Low Level Discrete IDE Controller – Repeated from above

Page 194 of 312

The communication signals that the CPU sends the interface are shown in Figure 9.5 below.

Figure 9.5: Signals of Communication between CPU and Interface

It is evident that the low-level design is very similar to the high level diagram. An important thing

to note is that DIOR/DIOW must only pulse once on the read or write of a hard drive register. This

is a requirement in the hard drive ATA specifications. The red box in the bottom left hand corner

of the discrete circuit is what allows the DIOR to hold its value for the 4 cycles it must wait to

output all four nibbles of data from the CPU. It essentially captures when the read signal turns on,

and then leaves it output as a ‘0’ until write becomes a ‘1’. It is evident why this is required from

the bottom signal in Figure 9.5. The data from the hard drive is received during the last four pulses

of read. During this time DIOR must stay low.

Figure 9.5 describes the signals required from the CPU to correctly communicate with the hard

drive. The top signal shows what must happen to write to a register, and the bottom two show the

read from a register. It takes nine R/W pulses from the CPU in order to do a single read/write from

the hard drive. This is very slow.

The entire circuit is clocked from the asynchronous signal NOT (R OR W). This allows the

controller to be rate limited from the CPU, meaning it cannot continue into the next state without

the CPU telling it. The CPU could send the address and D3 values to the controller, wait for a long

time, and then resume without any consequences.

To read or write from/to a register, the CPU must follow these steps below, also refer to Figure

9.5. To read or write to an entire sector of the hard drive one must follow the steps below.

Page 195 of 312

Some information before continuing:

 A sector is the smallest block that the hard drive can read or write to. In the case of the IDE

20-40GB hard drives used to test this peripheral, a sector is 512 bytes. (This is why there

is a loop of 256 when reading/writing)

 The DIOR/DIOW single pulse is how the hard drive knows that 16 bits have been read,

and it can move to the next data. If multiple pulses of DIOR happened per register read the

hard drive would spit out the D3 from one 16-bit value, D2 from another, and so on.

 Register values in the section below are assuming that the top bit (CS1) is a part of the

address. For example, in table 2 where it lists all hard drive registers, the data register with

addresses of: CS1 = 1, DA2-0 = 0, is shown below as register 0x8. Every register used

below has CS1 = 1 because these are the command registers.

Reading a Sector of Data

1) Using above steps for writing to a register, do the following:

a) Write number of sectors to be read to Reg 0xA (recommended 1, max 8)

b) Write bits 7-0 of LBA address to Reg 0xB (sector number)

c) Write bits 15-8 of LBA address to Reg 0xC (Cylinder low)

d) Write bits 23-16 of LBA address to Reg 0xD (Cylinder high)

e) Write 0xE<bits 26-24> of LBA address to Reg 0xE (Drive/Head) (Ex. 0xE0

recommended)

2) Write the read command(0x20) to cmd Reg(0xF)

3) Read the status Reg (0xF, yes it’s the same reg as cmd) a few times, the more the better (5 is

recommended by websites, ill test less when I get it on the CPU)

4) Repeat 256 times:

a) Write 16 bits of data to data Reg(0x8)

5) Optional: Read status and check for error (mask = 0x1 of dlow)/ make sure DRQ is low (mask

= 0x8 of dlow), maybe check BSY is low too (mask = 0x8 of dhigh).

6) Optional: to be sure you can read the sector count Reg(0xA), there should be 0 in there if the

data was transferred correctly.

Page 196 of 312

Writing a Sector of Data

1) Using above steps for writing to a register, do the following:

a) Write number of sectors to be read to Reg 0xA (recommended 1, max 8)

b) Write bits 7-0 of LBA address to Reg 0xB (sector number)

c) Write bits 15-8 of LBA address to Reg 0xC (Cylinder low)

d) Write bits 23-16 of LBA address to Reg 0xD (Cylinder high)

e) Write 0xE<bits 26-24> of LBA address to Reg 0xE (Drive/Head) (Ex. 0xE0

recommended)

2) Write the write command (0x30) to cmd Reg(0xF)

3) Do not read status here

4) Repeat 256 times:

a) Read 16 bits of data from Reg(0x8)

5) NOT OPTIONAL: Read status (0xF) a few times (5) to clear interrupt

6) Optional: steps 5, 6 of read can also be done.

These outlines are followed in the IDE driver that is written in macro assembly. This code can be

found in the Nibble Knowledge GitHub Folder.

Wiring the IDE Controller

A few examples of wiring of the LS chips that were used to create the hard drive interface follow.

Figure 9.6: Top View of SN74LS163AN Counter Chip

Page 197 of 312

This is the counter chip that is used as the main component of the cycle control unit. As with most

74 series chips, Vcc is in the top right, and ground is in the bottom left. These are wired directly

into the high and low rails on a bread board. This chip has some of the low enables that were

originally planned to be active high. In the next section we talk about how this affected the design.

A, B, C, D are the inputs if you want to load a starting value into the counter. Since this design

requires a reset value of 3, these values were used along with the active low signal LOAD to reset

to the required value. The Q values directly across the chip are the counter output values that are

used in combinational circuitry and fed into a decoder to enable each register one by one. When

the counter reaches the max value of 1011, the LOAD signal, is pulsed low so it reset the chip.

9.7. Testing the IDE Controller

The FPGA version was strictly in test bench. The discrete version, however, was thoroughly testing

in many different ways.

The components were tested while being built. Each time a new chip was added, input signals

were provided to verify performance. During this phase, the important discoveries were:

1. Many chips had active low enables instead of high. It usually worked out okay because

they all had active low so NOT gates were not needed.

2. Unused inputs must be grounded to avoid noise and unintended outputs.

Once built, the discrete circuit was tested using an Arduino since this is 5V logic. These tests were

successful and allowed editing of sectors. A problem occurred later due to the maximum

achievable speed of the Arduino being 165Hz.

Validation tests included:

1. Creating a text file on a separate computer with blank text, then using the IDE interface to

write text to it. We could then check the results on the other computer. This was successful.

2. Using the Arduino as a controller, reading and writing to/from the same sector with the

IDE interface. This was successful.

3. Using the Arduino with the bus circuit, to ensure design could read from the hard drive;

and send the read values to the sound controller in-between reads. This was successful.

Tests were then conducted using Nibble Knowledge CPU. This was very inconsistent, mainly due

to the high speeds. We were able to read a program from sector 0, and run it at 5MHz for a while,

Page 198 of 312

but eventually it stopped working. We did this by using a separate computer to write the binary

file onto sector 0 of the hard drive. The CPU would then use the interface to read the program into

location 50000 of the RAM. The CPU would jump to 50000 and run a keyboard and sound

program, which played a different sound based on the key pressed. It was found that the voltage

supply required very high precision for it to function properly; as a result the next time the

computer was set up, we could not get it to run. Due to this we removed the hard drive from the

final demo.

Note: There is extensive amount of code that has been developed to design the Nibble Knowledge

Computer. All of the code for different aspects of the IDE Controller is located in an online, web-

based Git repository hosting service. The Code is accessible through the link below:

https://github.com/Nibble-Knowledge

9.8 IDE Controller Specifications

Component Specifications

Clock Frequency 5 MHz CPU Clock

Controller Voltage Logic 5.00 V

Input Lines from CPU 4 Data lines

Input Lines from CPU 3 Status lines (W,R,PC)

Output Lines to Hard Drive 16 Data lines

Output Lines to Hard Drive 5 Address lines

Output Lines to Hard Drive DIOR and DIOW

Connector (4-pin) AMP1-480424-0

Contacts (piece) AMP 60619-4

Contacts (strip) AMP 61117-4

ATA Standard ANSI X3.221-199x

Table 9.3: IDE Controller Specifications

Page 199 of 312

10. PS/2 Keyboard Controller

10.1 Introduction

The PS/2 Keyboard Controller is the interface between a PS/2 Keyboard and the CPU. Making it

one of the crucial elements in ensuring the words or numbers that are typed on the keyboard end

up on the monitor. The main function of the controller is to evaluate the signals transmitted from

both the PS/2 Keyboard and the CPU. Once the controller is done evaluating these signals, it will

then transmit signals back to either the keyboard or the CPU based on the information the controller

initially received.

The purpose of the PS/2 keyboard controller is to facilitate communication between the keyboard

and the CPU. The controller converts electrical signals transmitted by the keyboard (when a button

is pressed on the keyboard) into valuable information that is read by the CPU when it is convenient

for it. In order to allow the CPU to finish its processes with other peripherals, the data from the

keyboard is stored within the controller until the CPU is ready to read it.

10.2 PS/2 Port

The PS/2 port is the location where the keyboard plugs into the controller. All communication is

transmitted through this port. The protocol between the PS/2 keyboard and the PS/2 Keyboard

Controller is synchronous, binary and serial based. There are two important signals sent through

the PS/2 port; the PS/2 keyboard generated clock and data signals.

The PS/2 Port pin-outs are as follows:

Male

(Plug)

Female

(Socket)

6-pin Mini-DIN (PS/2):
1 - Data

2 - Not Implemented

3 - Ground

4 - Vcc (+5V)

5 - Clock

6 - Not Implemented

Figure 10.1: PS/2 Port Plug and Pin Assignment

10.3 Keyboard to Controller Transmission

The data from the PS/2 keyboard to the PS/2 keyboard controller is sent serially in 11-bit frames.

The order of data transmission is as follows:

1. A start bit (which is always zero).

Page 200 of 312

2. Eight data bits starting with LSB first are shifted out one-by-one.

a. These are the bits of interest that will be transmitted from the PS/2 Keyboard

Controller to the CPU.

3. An odd parity bit (used for error detection).

a. If the number of 1’s in the data byte is even the parity is set to 1, but if the number

1’s is odd the parity is set to 0.

4. A stop bit (which is always one).

The PS/2 data transmission is synchronized to the PS/2 Keyboard clock signal, using a frequency

of 12.3 kHz. The keyboard writes a bit on the PS/2 Keyboard data line on the rising edge of the

clock. On the falling edge of the clock the bit is shifted into the PS/2 Keyboard controller’s shift

register.

Figure 10.2: PS/2 Data Transmission Synchronized with Clock Signal

Although not implemented, the CPU can transmit to the PS2 keyboard through the controller for

the purpose of turning LED’s on, transmitting an acknowledgement bit, etc. This process initiates

when the controller drives the clock line low for a period of 100 microseconds, disabling any data

being sent from the keyboard. The controller then drives the data line low, which tells the keyboard

the controller is ready to transmit data. The controller then releases the clock line and after a short

delay the keyboard starts clocking. The keyboard reads each bit on the rising edge and the

controller sends each bit on the falling edge. This continues until the stop bit is sent and the

controller releases the data line. The keyboard then sends an acknowledgement bit in the form of

driving the data line low.

Figure 10.3: CPU Data Transmission to PS/2 Controller

Page 201 of 312

10.4 Scan Codes

The keyboard sends a scan code to the controller whenever a key is being pressed, released or held

down. The data codes for the various keys on the keyboard are shown in Figure 10.4 below. Two

types of scan codes are sent to the controller: “make codes” and “break codes”. The make code is

sent when a key is pressed or held down; and a break code is sent after a key is released. We have

chosen to ignore the break codes in this design.

Each key has its own specific make and break codes. The make code is a single byte, unless an

extended key is pressed (i.e. Ctrl, left arrow, etc.). If an extended key is pressed the make code is

preceded by an “E0” byte. A break code is the keys make code preceded by either a “F0” for

normal keys or an “E0” and an “F0” for extended keys. In this design, instead of sending a make

code, a break code and another make code for every key pressed to the CPU, the peripheral only

sends the initial make code. If a key is pressed and held down that key becomes typematic. The

keyboard will continue to send that keys make code until another key is pressed or the key is

released.

Figure 10.4: PS/2 Keyboard Scan Codes

The concept of scan codes is best explained through an example:

1. Letter ‘S’ key is pressed. The scan code for this key is 1B in hexadecimal or 00011011 in

binary. The odd parity bit for this scan code is ‘1’.

2. The make code for this transmission is then 0 1101 1000 1 1 (start bit, data byte with LSB

first, parity bit, and stop bit).

3. Once the ‘S’ key is released a break code is sent. This break code is essentially the make

code with an F0 byte added in front of it. Therefore, the break code sent is 0 0000 1111 1

Page 202 of 312

0, 0 0011 1000 0 1 (the stop bit for the F0 byte is 0 since the transmission is not complete).

In this educational kit we will completely ignore the break code and focus solely on the

make code. Once the make code has been transmitted into the shift register the shift register

will discontinue to shift freely and ignore any new incoming data until the make code has

been transmitted to the CPU.

10.5 PS/2 FPGA Implementation

The FPGA implementation of the peripheral serves as an intermediate step in the development of

the discrete PS/2 keyboard controller. This implementation allowed a behavioral approach in

designing the peripheral. Additionally, it simplified the task of creating a discrete circuit by

transforming the VHDL code into discrete logic chips. These are only snippets and the entire code

is attached in the Appendix, section A.2 PS/2 Controller

Example 1: VHDL code to discrete logic chips conversion

VHDL code: if (cpu_read = '0' and parity_check = '1' and low_nibble_out = '1' and end_of_trans

<= '0')

Logic chips: A 4 IN – 1 OUT AND gate

 Inputs: NOT cpu_read, parity_check, low_nibble_out and NOT end_of_trans

 Output: the result of the following 4 signals AND gated together

Example 2: VHDL code to discrete logic chips conversion - Multiplexer Selector

VHDL code: if (no_data = '1') then

 out_nibble <= "ZZZZ";

 else

 if (s = '1') then

 out_nibble <= high_nibble;

 else

 out_nibble <= low_nibble;

 end if;

 end if;

Logic chips: 8x4 Multiplexer chip

 Inputs: output of an AND gate (which determines if the output of the Mux should be the

high or low nibble due to the state of signals coming from the CPU and PS/2 Keyboard)

Page 203 of 312

 Output: if the input to the select pin was high the mux will output the high nibble otherwise

it will output the low nibble

10.6 PS/2 Discrete Implementation

Detecting End of Transmission

When a key is pressed on the PS/2 keyboard the data is shifted into the 11 shift registers located

within the PS/2 keyboard controller. Once the 11-bits have been transmitted the shift registers stop

shifting through the use of a counter and some additional combinational logic.

8 x 4 Multiplexer

The CPU is informed that data is ready to be read once the end of transmission has been detected.

This is accomplished by setting the ready bit to logic high. Bits (8 to 1) of the shift registers are

passed into an 8 x 4 multiplexer. The select for the mux is controlled with the CPU read, parity

and chip select lines along with some additional sequential and combinational logic. Initially, when

end of transmission has been determined the select is set to ‘1’ and the multiplexer will output the

high nibble (bits 8 to 5). The CPU will then read the data from the controller and set its read line

to logic low, which sets the multiplexer select to ‘0’. The output of the multiplexer will now be the

low nibble (bits 4 to 1). The CPU reads the data from the controller and sets its read line to logic

low once the read has completed. Now that the high and low nibbles have been successfully sent

from the controller to the CPU, the controller will set the ready line back to logic low until another

key has been pressed on the keyboard.

Figure 10.5: The 8 x 4 Multiplexer

Page 204 of 312

Figure 10.6: High Level Block Diagram of PS/2 Controller

Figure 10.7: PS/2 Controller Breadboard Circuit Layout

Page 205 of 312

Figure 10.8: PS/2 Controller Counter Circuit

Figure 10.9: PS/2 Controller Shift Register

Page 206 of 312

Figure 10.10: PS/2 Controller Ready Bit and Multiplexer Select Circuit

Figure 10.11: PS/2 Controller Entire Low Level Circuit

Circuit Wiring Protocol

Example: Explaining the number-number convention

Page 207 of 312

Chip 2 – Pin 10 is connected to Chip 3 – Pin 4 (i.e. Output of the NOT gate is connected to one

of the inputs of the 3 IN AND gate.

Figure 10.12: PS/2 Controller SN74LS 8 x 4 Multiplexer

Pin 1: Chip 12 - Pin 1 (Mux selector - If high will output high nibble to bus data line and if low

will output low nibble to bus data line)

Pin 2: Chip 8 - Pin 9 (Shift Register - Bit 4) Low Nibble Bit 3

Pin 3: Chip 8 - Pin 5 (Shift Register - Bit 8) High Nibble Bit 3

Pin 4: Bus Data line bit 3

Pin 5: Chip 9 - Pin 9 (Shift Register - Bit 3) Low Nibble Bit 2

Pin 6: Chip 9 - Pin 5 (Shift Register - Bit 7) High Nibble Bit 2

Pin 7: Bus Data line bit 2

Pin 8: Wired to ground

Pin 9: Bus Data line bit 1

Pin 10: Chip 10 - Pin 5 (Shift Register - Bit 6) High Nibble Bit 1

Pin 11: Chip 10 - Pin 9 (Shift Register - Bit 2) Low Nibble Bit 1

Pin 12: Bus Data line bit 0

Pin 13: Chip 11 - Pin 5 (Shift Register - Bit 5) High Nibble Bit 0

Pin 14: Chip 11 - Pin 9 (Shift Register - Bit 1) Low Nibble Bit 0

Pin 15: Chip 12 - Pin 13 (Mux low enabled reset)

Pin 16: Wired to 5 V

Page 208 of 312

Figure 10.13: Fully wired PS/2 Keyboard Controller

10.7. The Final Product

The PS/2 keyboard controller is able to convert serial input from the PS/2 keyboard (i.e. the 11 bit

make code from a key that is pressed on the keyboard) to two four bit nibble outputs, which are

transmitted at the CPU’s convenience. The final PS/2 keyboard can also transmit to the CPU

through the controller for the purpose of turning LED’s. Due to the simplicity of our computer

Page 209 of 312

design it was decided we omit any CPU to keyboard transmission (i.e. illuminating the CAPS or

NUM lock LED’s).

Controller to Keyboard Transmission

Although not relevant to the implementation of this Keyboard Controller, the controller can be a

bidirectional device. It was in the best interest of hardware simplicity to avoid transmitting from

the CPU to the keyboard because this functionality is not required for the purpose of this

educational kit and it would add unneeded complexity to the design. The CPU can transmit to the

PS2 keyboard through the controller for the purpose of turning LED’s on, transmitting an

acknowledgement bit, etc. This process initiates when the controller drives the clock line low for

a period of 100 microseconds, disabling any data being sent from the keyboard. The controller

then drives the data line low, which tells the keyboard the controller is ready to transmit data. The

controller then releases the clock line and after a short delay the keyboard starts clocking. The

keyboard reads each bit on the rising edge and the controller sends each bit on the falling edge.

This continues until the stop bit is sent and the controller releases the data line. The keyboard then

sends an acknowledgement bit in the form of driving the data line low.

The PS/2 keyboard controller ignores the start, parity and end bits of the make code and only relays

the eight data bits which are unique to each key on the keyboard. We also chose to ignore the

parity bit sent from the keyboard to the controller and deemed it as an unnecessary addition to our

design.

Figure 10.14: CPU Data Transmission to PS/2 Controller

Parity Bit

A parity bit check that includes data sent from the keyboard to the controller is a handy tool to

detect any errors during transmission. It was determined to exclude this functionality in the kit

since transmission errors between the keyboard and controller are very rare and the extra logic to

Page 210 of 312

include the parity check will take up needed real estate on our breadboards. The parity bit is the

second last bit to be sent to the controller followed by the stop bit. A parity bit will also be

computed within the controller and the two bits will then be compared to prove no data was

corrupted during transmission. The parity bit within the controller is computed with the use of an

XNOR gate. All data bit are connected together at the input of the gate and the parity bit is given

at the output.

Figure 10.15: Parity Bit XOR Gate

The controller is designed this way to achieve the simplest circuit possible while upholding the

functionality needed to transmit data from the keyboard to the CPU. Therefore, it was decided to

leave out features like CPU to Keyboard data transfer (i.e. to illuminate LED’s for CAPS or NUM

lock) and an internal parity check for further protection against data corruption.

10.8 PS/2 Controller Specifications

Component Specifications

Controller Voltage Logic 5.00 V

Clock Frequency 12.3 kHz

CMOS/TTL Chips Vcc 5.00 V

CMOS/TTL Chips VIH 2 – 3.15 V

CMOS/TTL Chips VIL 0.8 – 1.53 V

Table 10.1: PS/2 Keyboard Controller Specifications

Page 211 of 312

11. Serial Communication RS232 Controller

11.1 Introduction

Serial communication, also known as RS232, is a standard method of communicating between

computers and peripherals. The devices are connected with a serial cable, most commonly with

DB9 connectors. The standard bit transfer rate is 9600 baud (where a baud is approximately one

bit per second), but it can be anywhere from 110 baud to almost a mega-baud.

Although the standards specify how information is to be transmitted across the wire, it leaves it up

to the user to verify the integrity of the data. Thus, features such as handshaking and parity checks

depend on how the hardware and software were implemented, and there is no one standard.

Data Equipment

Serial communication is used between two devices, one which is called the data terminal

equipment (DTE) and the other being the data circuit-terminating equipment (DCE). Normally,

the DTE is the main computer, while the DCE is the peripheral to which the DTE sends commands,

such as a modem. In Nibble Knowledge serial controller, the DTE is considered the PC or other

device connected to the serial peripheral, and the DCE is the peripheral itself, which is connected

to the CPU.

DB9 Connector

A DB9 connector is a 9-pin jack to which a serial cable connects. Not all pins need to be used, but

at least three of those have to be connected: one for transmitting data, one for receiving, and one

grounded. The full pinout and listing of the pins used by the peripheral are described in Figure

11.1 and Table 11.1 below.

Figure 11.1: DB9 Connector – Female. Male Connector flipped horizontally

Page 212 of 312

Pin Name Direction Description Used in

Peripheral?

1 Data Carrier Detector

(DCD)

DTE←DC

E

Is the DCE (e.g. a modem)

connected to the remote host

NO

2 Received Data (RD) DTE←DC

E

Data sent from peripheral to PC YES

3 Transmitted Data (TD) DTE→DC

E

Data sent from PC to peripheral YES

4 Data Terminal Ready

(DTR)

DTE→DC

E

DTE is connected and ready to

transmit/receive data

NO

5 Ground (GND) YES

6 Data Set Ready (DSR) DTE←DC

E

DCE is connected and ready to

transmit/receive data

NO

7 Request to Send

(RTS)

DTE→DC

E

DTE wants to send data to the

DCE

YES

8 Clear to Send (CTS) DTE←DC

E

DCE is ready to accept data from

DTE

NO

9 Ring Indicator (RI) DTE←DC

E

DCE (e.g. modem) has detected a

ring on the phone line

NO

Table 11.1: DB9 Connector Pinout in Serial Controller

Data Transmission Protocol

Data is sent on the RD or TD lines, depending on the direction, bit by bit at the specified baud rate

(peripheral uses 9600 baud). The first signal sent is a transition from low (0V) to high (5V),

indicating to the other side that a message is being sent. This is followed by 8 bits of data, least

significant bit (LSB) first, where a ‘1’ is represented as 0V and a ‘0’ as 5V. Finally, a low signal

is sent to indicate the end of the message. Afterwards, another message may be sent, starting with

the low → high transition. Figure 11.2 visually shows the signal being sent on the wire.

Page 213 of 312

Figure 11.2: Serial Controller Sample Data Transmission

Communicating with the CPU

When reading from the peripheral, the CPU needs to raise the read signal high. If the peripheral

does not raise the ready signal high, it means that no new data arrived from the PC. Otherwise, the

peripheral raises the ready signal high and puts the four most significant bits (MSB) of the data on

the bus, until the CPU lowers the read signal. To get the four LSBs, the CPU must once again raise

the read signal.

When writing to the peripheral, the CPU needs to raise the write signal high. If the peripheral does

not raise the ready signal high, the peripheral is busy transferring older data to the PC and is not

currently ready to receive any new data. Otherwise, the CPU needs to place the four MSBs of the

byte on the bus, and keep them until lowering the write signal. To write the four LSBs, the CPU

needs to once again raise the write signal. Only after the CPU transmits all eight bits to the

peripheral is when the byte will be actually transmitted to the PC.

11.2 Serial Controller High Level Design

The peripheral can be considered as made out of four components: PC to peripheral, peripheral to

CPU, CPU to peripheral, and peripheral to PC. The former two components are separated by a

RAM cell, used to buffer incoming data, and the latter two separated by an 8-bit buffer for outgoing

data. Figure 11.3 illustrates this design.

Page 214 of 312

Figure 11.3: Serial Controller High Level Design

Connections on the left are connected to the DB9 connector, specifically pin 3 for serial in and pin

2 for serial out, and signals on the right are connected to the CPU.

The RAM cell is required when receiving data from the PC because, in the current implementation,

there is no way to tell the PC when to send data. As such, the peripheral needs to buffer every

incoming byte or risk dropping data. Although the CPU is faster than incoming data, the CPU may

not be constantly polling the peripheral for more data. A RAM cell is not required for outgoing

data, instead being replaced with a simple 8-bit buffer, because the peripheral can indicate to the

CPU when it’s allowed to send data.

11.3 Serial Controller FPGA Implementation

The top-level design described above has been implemented and tested on an FPGA. Like the top-

level design, it is composed of a top-level implementation and contains the four components

described above. Due to the limitations of the FPGA, an external RAM chip must be wired up to

the FPGA. Furthermore, since the serial signal operates at 5V and the FPGA operates at 3.3V, a

couple CMOS chips were used as voltage translators.

The code used for a Papilio One FPGA is available on the Nibble Knowledge GitHub page. In

Figure 11.4 below, an example wiring diagram is provided with Papilio One FPGA, IDT71256SA

32KB RAM cell, and CD4007 CMOS chips.

Page 215 of 312

Figure 11.4: Papilio One FPGA Wiring Diagram

11.4 Serial Controller Discrete Implementation

Quick Wiring Guidelines

The chips illustrated above are referred to as dual in-line packages (DIP). DIP chips are primarily

used on breadboards and are inserted in the middle, above the center groove. Figure 11.5 below

shows how and how not to insert DIPs.

Page 216 of 312

Figure 11.5: DIP Chips on Breadboard

Insert the chips as on the bottom. NEVER insert like the on the top. Note the engraving on the side

of the Chip, indicating the top side of it.

DIP chips usually have an engraved semicircle, indicating the top side of the chip. All chips should

be facing the same way on the breadboard.

Pin numbering begins on the top-left of the chip and continues counterclockwise, reaching the

bottom-left corner, continuing on the bottom-right, and ending on the top-right. Looking on the

chips in Figure 11.5, there are 14 pins: 1 through 7 on the left side, counting downwards, and 8

through 14 on the right side, counting upwards.

To connect one pin of a chip to another, insert a wire to a breadboard pin on the same row as the

chip pin. Normally, breadboards have dedicated rails on the sides for ground and power. Chips

requiring ground and power (which should be all of them) need to be wired up to the corresponding

rail. For example, in Figure 11.5, the top CD4007 chip has 6 connections, and the pins should be

connected as follows: pins 7 (bottom left) and 9 connected to the ground rail; pins 11 and 14 (top

Page 217 of 312

right) to the power rail, ensuring the voltage is at 3.3V; pin 10 connected to the DB9 connector;

and pin 12 connected to the B0 pin on the FPGA.

To simplify the implementation of the discrete serial peripheral, the VHDL code used for

programming the FPGA has been converted into a circuit. Since VHDL is used to describe a real

digital circuit, translation is relatively simple. All finite state machines (FSM) were converted to a

mux-DFF-decoder combination: mux (multiplexer) to determine the next state, DFF (D flip-flop)

to hold the current state, and a decoder to convert a state number into an active signal.

For simplicity, the discrete implementation is split up into the top-level design and the four

components. Below, figure 11.6 described the top-level discrete implementation, while figure 11.7

describes the components.

Figure 11.6: Low Level Design of the Serial Controller

The device at the top-right is the RAM cell. The pair of NOR gates at the bottom-right can (and

should be) replaced with an SR-latch. Although the implementation requires a clock signal from

the CPU, it may be replaced with the read signal from the CPU.

Page 218 of 312

Figure 11.7: PCIN Component of the Serial Controller

A finite state machine (FSM) that puts incoming data into a shift register, transferring the data to

the RAM cell once full and incrementing the RAM address. The clk_uart is a clock signal that has

the same frequency as the baud rate (9600Hz).

Figure 11.8: CPU OUT Component of the Serial Controller

An FSM which grabs data from the RAM when its RAM address counter no longer matches

PCIN’s RAM address, increments its own counter, and transmits data to the CPU when ready.

Page 219 of 312

Figure 11.9: CPU IN Component of the Serial Controller

Takes data from the CPU and places into two 4-bit registers, ready to be used by the PCOUT

component.

Figure 11.10: PC IN Component of the Serial Controller

Takes data from the registers in the CPUIN component and transmits, bit by bit, to the PC.

11.5. Testing the Serial Communication RS232 Controller

Serial communication is successful between a PC and the Nibble Knowledge CPU, as it provides

a way to send arbitrary raw data. The peripheral allows a PC to input commands directly to the

CPU; it also allows programmers to write programs that can send arbitrary data back and forth

between the PC and a CPU.

Page 220 of 312

9.5.2 Validation Tests and Results

Testbench files were written to test the VHDL code before being programmed to the FPGA. The

testbenches simulated the input data, such as pulses coming in from the serial and data coming in

from the CPU. To ensure correct results, the waveforms were analyzed to monitor the output.

These tests allowed for simpler debugging, and all bugs were eliminated prior to programming. A

snippet of the waveforms produced by the test is illustrated in figure 11.11 below.

Figure 11.11: Serial Input VHDL Testbench Response

After programming, the FPGA was wired up as described in Figure 11.11. The serial’s pins were

soldered to the DB9 connector, and a serial-to-USB cable was used to connect to the PC. All CPU

connections were connected to a breadboard, all inputs were connected to buttons and the output

(CPU ready) was connected to the LED. Using the Tera Term program on the PC, bytes were sent

from the PC to the peripheral; using the buttons, we determined if the same input would be

displayed on the breadboard. Similarly, the buttons were used to send data to the peripheral; Tera

Term was used to confirm that the correct data was sent through. The results confirmed that the

FPGA was programmed correctly and the implementation of the serial protocol was correct.

After wiring the discrete implementation of the peripheral, it was tested in a similar fashion as

above, being wired up to the breadboard. The tests determined that neither sending nor receiving

data was working correctly. Due to a shortage of time, further testing or debugging was not

conducted.

Finally, the FPGA implementation was tested with the discrete bus, communicating with the

discrete CPU. The serial side was wired up to the same PC, the CPU side was disconnected from

the breadboard and connected to the bus. Due to lack of time, the signals were shared with the ones

from the VGA peripheral; which has a similar driver to the CPU. Tera Term was used to confirm

Page 221 of 312

that the peripheral correctly sends data to the PC. Data receiving was not tested with the discrete

bus.

Note: There is extensive amount of code that has been developed to design the Nibble Knowledge

Computer. All of the code for different aspects of the Serial Communication RS232 Controller is

located in an online, web-based Git repository hosting service. The Code is accessible through the

link below:

https://github.com/Nibble-Knowledge

11.6 Serial Communication RS232 Controller Specifications

Component Specifications

Clock Frequency 9600 Hz

Serial Logic Voltage 0.00 V to 5.00 V

Controller Voltage (FPGA) 0.00 V to 3.30 V

Data Rate 9600 baud

Communication Standard RS 232 Standard

Table 11.2: Serial Communication RS232 Controller Specifications

Page 222 of 312

12. Software

12.1 Cute BASIC

Cute BASIC is a BASIC like programming language developed for the Nibble Knowledge System.

BASIC is an acronym for Beginner’s All-purpose Symbolic Instruction Code. BASIC languages

are built to be lightweight and easy to learn. Many programmable calculators such as the Texas

Instruments brand use some variant of a BASIC language. It is a simple, general purpose high-

level programming language. A high-level programming language is a programming language

which uses natural language elements and is abstracted from the details of the computer. These

languages are focused on usability and deal with things like variables, arrays, Boolean expressions,

loops, functions and other abstract concepts rather than translating directly to the computer’s

opcode like a low-level assembly language would. Low-level languages will be described in the

following chapter. These languages focus on usability rather than on efficiency.

It makes programming a lot easier and faster, as well as provides a translatable instruction set so

that it can be easily learned for any spoken language instead of just English. Instructions in Cute

BASIC are transformed into multiple lower level instructions which are understood and executed

by the computer. These lower level instructions are difficult to read and maintain, and can be very

time consuming writing out manually. Some of the more extreme cases will have one line of Cute

BASIC being turned into dozens of lines of opcode which makes programming a much more

efficient task. The downside to using Cute BASIC is that it can’t perfectly optimize your program

for computational efficiency - this can lead to unnecessary or redundant instructions for the

computer to perform, however in majority of cases this is not an issue that needs to be addressed.

It works by taking an expected line of code based on the language specification, or the language

syntax and turning it into something the computer can understand. The syntax is the set of rules

which the programming language uses to check if a document is correctly structured and

understood. These rules vary based on each language. Each line of Cute BASIC code is translated

into a series of Macro Assembly instructions, which themselves are turned into assembly

instructions which are able to be understood by the computer, these topics will be covered further

on.

Page 223 of 312

The following is the language specification for Cute BASIC:

Declaration

 LET (variable name)

 Assigns value of var2 to var1. UNSIGNED keyword is implied. var2 can be a literal.

 LET (variable name) BE (number)

 Creates a variable called (variable name) and assigns (number) to it

 LET (variable name) AS (size in nibbles)

 Creates a variable called (variable name) with a size in nibbles of (size in nibbles)

 LET (variable name) AS (size in nibbles) BE (number)

 Creates a variable called (variable name) with a size in nibbles of (size in nibbles) and

assigns (number) to it

Assignment

 (var1) BE (var2)

 Assigns value of var2 to var1. UNSIGNED keyword is implied. var2 can be a literal.

 (var1) BE (var2) UNSIGNED

 Assigns value of var2 to var1. Truncates or zero-extends

 (var1) BE (var2) SIGNED

 Assigns value of var2 to var1. Truncates (maintaining value of MSB) or sign-extends

Note for assignment and declaration: Values are stored big-endian

Unary math/logical/bitwise operators

 (var0) BE NEGATE (var1)

 Var0 evaluates to -(var1). In 2's complement, so (COMPLEMENT var1) ADD 1

 (var0) BE INCREMENT (var1)

 Var0 evaluates to (var1 + 1)

 (var0) BE DECREMENT (var1)

 Var0 evaluates to (var1 - 1)

 (var0) BE NOT (var1)

 Var0 evaluates to logical negation of var1

 (var0) BE COMPLEMENT (var1)

Page 224 of 312

 Var0 evaluates to bitwise complement of var1

Binary math/logical/bitwise operators

 (var0) BE (var1) ADD (var2)

 Var0 evaluates to sum of var1+var2

 (var0) BE (var1) SUBTRACT (var2)

 Var0 evaluates to difference of var1-var2

 (var0) BE (var1) MODULUS (var2)

 Var0 evaluates to remainder of var1/var2

 (var0) BE (var1) MULTIPLY (var2)

 Var0 evaluates to product of var1*var2

 (var0) BE (var1) DIVIDE (var2)

 Var0 evaluates to product of var1/var2

 (var0) BE (var1) ALSO (var2)

 Var0 evaluates to 1 if both var1 and var2 are TRUE

 (var0) BE (var1) EITHER (var2)

 Var0 evaluates to 1 if either var1 or var2 are TRUE

 (var0) BE (var1) AND (var2)

 Var0 evaluates to bitwise AND of variable

 (var0) BE (var1) OR (var2)

 Var0 evaluates to bitwise OR of variables

 (var0) BE (var1) XOR (var2)

 Var0 evaluates to bitwise XOR of variables

 (var0) BE (var1) NAND (var2)

 Var0 evaluates to bitwise NAND of variables

 (var0) BE (var1) NOR (var2)

 Var0 evaluates to bitwise NOR of variables

 (var0) BE (var1) XNOR (var2)

 Var0 evaluates to bitwise XNORof variables

 (var0) BE (var1) LSHIFT (var2)

Page 225 of 312

 Var0 var2 should be small; left-shifts by var2, fills right with zeros, truncates anything that

falls off left

 (var0) BE (var1) RSHIFT (var2)

 (var0) BE (var1) LROTATE (var2)

 Var0 var2 should be small; left-rotates by var2, anything that falls off left gets put back on

right

 (var0) BE (var1) RROTATE (var2)

Logical Comparison

 (var0) BE (var1) EQUALS (var2)

 (var0) BE (var1) NOTEQUALS (var2)

 (var0) BE (var1) GREATER (var2)

 (var0) BE (var1) GREATEREQUALS (var2)

 (var0) BE (var1) LESS (var2)

 (var0) BE (var1) LESSEQUALS (var2)

Pointers

 (var0) BE CONTENTOF (var1)

 Var0 evaluates to dereferenced value pointed at by var1

 (var0) BE ADDRESSOF (var1)

 Var0 evaluates to (16-bit) address of var1

Loops and Conditionals

 LOOPWHILE (var1)

 ENDLOOP

 IF (var1)

 ELSE IF (var2)

 ELSE

 ENDIF

 LOOPAGAIN

 Return to top of loop, as "continue"

Page 226 of 312

 EXITLOOP

 Exit innermost loop, as "break"

 EXITIF

 Exit innermost "if" block, as "break"

Labels and Gotos

 LABEL (name)

 GOTO (name)

Functions

 FUNCTION (funcName) RETURNS (size in nibbles) TAKES [(size in nibbles) (paramName)]

ASWELL…

 FUNCTION (funcName) TAKES ... RETURNS (size in nibbles)

 FUNCTION (funcName) TAKES [(size in nibbles) (paramName)]

 FUNCTION (funcName) RETURNS (size in nibbles)

 FUNCTION (funcName)

 RETURN (var1)

 Exits function, returns var1

 CALL (funcName) (var1) ASWELL (var2)...

 Var1, var2, are parameters. Evaluates to return type of funcName; evaluates to TRUE if

nothing returned

I/O

 NOHEADER

 Remove CUTE BASIC header output

 CALL GETCHAR (variable) [AT (index)] (file name or STDIN if blank) [AT (index)] [FOR

#]

 Gets a character from file or STDIN(keyboard) for # chars

 CALL PUTCHAR (variable) [AT (index)] (file name or STDOUT if blank) [AT (index)] [FOR

#]

 Writes a character to file or STDOUT(screen) for # chars

Page 227 of 312

12.2 Macro Assembler

The Macro Assembly is a set of macro instructions that work with the CPU assembly language.

A macro instruction is an assembly language pseudo instruction that can be directly expressed as

a sequence of normal assembly language instructions. In essence, it is a shorthand way of writing

several normal instructions. We use these macro instructions to express common procedures that

are not directly supported by the CPU assembly language.

Why do we use it?

Our CPU assembly language is exceptionally simple. It was designed to be the minimal set of

instructions that are necessary to do all of the basic operations common to computing.

Unfortunately, it being possible to do a basic operation does not mean it is simple to figure out

how to do that basic operation. Take, for instance, the macro instruction definition for a 4-bit

Exclusive-or (XOR) operation:

binMac["XOR"] = """

LOD $op1

NND $op2

STR macro[0]

NND $op1

STR macro[1]

LOD macro[0]

NND $op2

NND macro[1]

STR $dest"""

The procedure above is nine instructions, and requires use of two memory locations as temporary

variables. Writing it out longhand every time it is needed would not only be an incredible waste

of time, but would also increase the number of errors that make it into our code. It would be very

easy to mess up and put a “0” where we actually need a “1”, or switch a NND for an STR. It would

also be very hard to figure out where this mistake was made. So, to avoid this problem, we decided

to write the procedure once, and make sure that it was correct that one time.

Page 228 of 312

Another benefit of writing things down once and referring back to them is that we can be very

clever with how we define our macro instructions, and make them very efficient. Often times, there

exist several ways of doing something, and the most obvious or direct method is not always the

fastest or best. For instance, the standard textbook procedure for doing a two’s complement

comparison operation is to:

1. Bitwise complement the second operand

2. Add 1 to the complemented second operand, to finish negating it

3. Add the first operand to the negated second operand

4. Fetch the two’s complement comparison flag

In our system, following this procedure exactly would produce the following code:

NOT $op2 INTO macro[0]

INC macro[0]

ADD macro[0] $op1 INTO macro[1]

GETCMP ACC

This works out to nine instructions per nibble, plus the three instructions of GETCMP ACC. By

artfully combining instructions, the standard procedure we actually use for comparison operations

works out to just three instructions per nibble. This means that a one-time optimization effort

allows all future programmers to have code that is just one third the size of the “most obvious”

solution!

The third benefit of the Macro Assembly is that we can deal with large numbers in a transparent

way. The CPU can only count to 15 (unsigned), or the range from -8 to +7 (signed). We might

need to count to twenty someday, or maybe twenty million. By creating a set of macros that deal

with multi-nibble computations, we can allow a programmer to deal with numbers up to sixty-four

bits long, without them needing to fully understand how to propagate the computation from one

nibble to the next.

Page 229 of 312

How does it work?

The macro assembler itself is made of three main parts:

 The front end script

 The macro expansion core

 The macro definition libraries

The front end script is the simplest part. It opens and manages files, and reads the command-line

arguments it is given. It also directly handles file inclusion, by stacking the program code and data

sections into our stack-of-pancakes structure.

The macro expansion core is a couple of files of python. It is given input one line at a time. For

each line, it determines if that line is a macro instruction, a “fall-through line” (such as a CPU

assembly instruction or a comment), or an error. If the line is a macro instruction, it looks up the

definition of that instruction, and works out the labels and offsets needed to apply that definition.

Finally, it passes each line of the resulting code to itself, in case it contains even more macro

instructions. All of the macro definitions eventually expand down to CPU assembly, so this passing

code to itself is guaranteed to end.

The macro definition libraries are the largest component of the macro assembler. It creates a set of

Python “Dictionary” objects that allow the macro expansion core to look up the definition of each

macro instruction. Some of the macro definitions refer to other macros, but we were very careful

to ensure that there were never any “cycles” of macro A referring to macro B referring back to

macro A, because these would make the macro expansion core get lost in an infinite recursion.

Another careful design aspect of the macro definitions is the use of macro scratch space memory.

This is a block of memory reserved specifically for the macro instructions, but they need to

coordinate how they use it so that they do not start overwriting each other’s data. Fortunately,

macros only use memory inside the set of instructions they expand to, so when using macro

memory, you only need to consider the macro memory use of the other macros your macro uses.

Sounds a bit complex, but it’s relatively easy in practice.

Page 230 of 312

12.3 CPU Assembler

The Nibble Knowledge CPU Assembler interfaces directly with the CPU and effectively converts

assembly language code made up of 12 recognized language constructs and converts them into

binary which can be run on the CPU. An assembler is a program which takes low-level assembly

language programming and converts it into a pattern of bits which is recognized and executed by

the computer. Assembly is a low-level programming language, that means that is has little or no

abstraction from the computer’s instruction set and that commands map closely to processor

instructions. Due to how close this relationship it low-level code is generally non-portable -

meaning that it’s ability to run depends on if it is compatible with the CPU hardware.

Why do we use it?

It translates our 12 instructions into a series of bits which the CPU recognizes and can run. It is

how we make the computer do what we want it to do, rather than just sit there and be a fancy box.

In other words, if we want the computer to run any programs, we need a functioning assembler. If

used directly it can make programs extremely efficient by programming them in a low-level

assembly language, as it is possible to make it so that every instruction is purposeful and there is

zero redundancy or repetition unlike that which gets added when using high-level languages. In

most situations this is not a necessity, but in extremely long or time sensitive projects this

optimization can make a massive difference, especially if it is in a subroutine which will be called

and executed many times.

How does it work?

It works by reading in an assembly file line by line, and outputting a pattern of bits which are

recognised by the CPU. These patterns tell the CPU what to do and depend on the architecture of

the CPU. The Nibble Knowledge CPU recognises only a small number of patterns in order to keep

its complexity relatively small. The patterns recognised by Nibble Knowledge will be different to

those recognised by an ARM or x86 processor and thus binary code created for one system will

not usually translate to another system. Like a higher-level language assembly languages each

have their own syntax as well, and you must make sure you are using the correct syntax for the

language you are programming in. Each pattern will cause the CPU to perform a specific action,

and when chained together, these actions allow the computer to function as seen in everyday life -

from things such as starting up, running a program, or typing on the keyboard.

Page 231 of 312

12.3.1 8 Instructions

The Nibble Knowledge CPU has 8 instructions which are split into two different types:

 Solitary instructions that do not require a memory address (has the format INST)

o NOP: No operation

o HLT: Halt CPU

o CXA: Copy the overflow bit and the XOR of that bit and the MSB of the

accumulator.

 Binary instructions that require a memory address (has the formal INST ADDR)

o ADD: Add the nibble at the specified memory address to the accumulator.

o NND: NAND the nibble at the specified memory address to the accumulator.

o JMP: Jump to the specified memory address if the accumulator is 0.

o LOD: Load the accumulator with the nibble at the specified address.

o STR: Store the nibble in the accumulator to the specified memory address.

12.3.2 Pseudo Instructions

To aid in disassembly a new metadata format for binary files is now included in the assembler as

of v1.1.0.

 INF - the information section must start with this, and this should be the first instruction of

any file.

 PINF - the start of the executable information section. Any unknown tuples within the

executable information section are treated as pseudo instructions with a data field.

 BADR - The base address of the binary file. Must be in the executable data section.

 EPINF - the end of the executable information section.

 DSEC - the memory location of the data section which should succeed the text section.

Should be a label so that it is modified by the base address and can be reliably disassembled.

If there is no data section, this should point to the end of the file.

 Data section descriptors:

o DNUM - the amount of data sections of the following size

o DSIZE - the size

Page 232 of 312

o There should be as many DNUM/DSIZE pairs as there are unique groups of data

sections. The example below is illustrative. These pairs must be in the same order

as the data sections themselves.

 EINF - end of the information section.

12.3.3 Two Data Types

AS4 recognizes two inbuilt data types:

 Numerical values. Format: ".data SIZE INITIALVALUE"

o .data can also be used to create a static reference to a label. The SIZE must be 4.

The format is ".data SIZE LABEL" or ".data SIZE LABEL [OFFSET]". This will

save the static 16-bit memory location pointed to by LABEL or LABEL + OFFSET

to the .data section.

 Strings, both plain and zero terminated. Format: ".ascii "String"" or ".asciiz "String""

o Strings must start and end with double quotes.

o AS4 recognises standard escape characters

12.3.4 Labels

Labels are of the format "NAME:”. They are used to refer to memory locations without having to

memorize or calculate number. An example of usage would be "number: .data 1 2", which is using

the label "number" to point to a data element of 1 nibble in size with the initial value of 2.

Labels when referenced in instructions can be used in two forms:

 INST LABEL

o Where the instruction INST simply references the memory location pointed to by

LABEL

 INST LABEL[OFFSET]

o Where the instruction INST references the memory location pointed to by LABEL

+ OFFSET. OFFSET is usually a hexidecimal value, optionally preceded by "0x".

To use a binary value, prefix with "0b". For an octal value, prefix "0" or "0o". For

a decimal value, prefix "0d".

An example of usage would be "LOD sum [F]", which loads the memory address pointed to by

"sum" plus the offset of "F" (15 in decimal) into the accumulator.

Page 233 of 312

12.3.5 Address of Operations

As all programs built by AS4 are assumed to be static, non-relocatable binary files, the addresses

pointed by labels can be calculated at assemble time and used statically. The form is below:

 &(LABEL[OFFSET])[ADDRESS_OFFSET]

o LABEL[OFFSET] is the same as for the standard label usage. &() indicates this is

an address of operation, and [ADDRESS_OFFSET] is what 4-bit portion of the 16-

bit address you want. Both [OFFSET] and [ADDRESS_OFFSET] are optional,

without them an offset of zero is assumed.

This loads a corresponding value from the table of static values - for example, if the address of the

label "Carmen" is 0x00FE, and you use the address of operation LOD &(Carmen)[1], you would

load "0xF" into the accumulator; which is the same as using the instruction LOD N_[F] when the

N_ static number series is defined.

12.3.6 Comments

Comments in AS4 start with a semicolon, ";" or an octothorp, "#".

12.3.7 Numbers

AS4 accepts binary, octal, hexadecimal and binary numbers. Binary numbers must always be

preceded by "0b" and octal by "0" or "0o". The rules for decimal and hexadecimal vary depending

on use case.

 When used for an offset, in the form LABEL[OFFSET], it is assumed the default is

hexadecimal. Thus, hexadecimal numbers can be written with or without a preceding "0x".

Decimal numbers must be written with a preceding "0d".

 In all other cases, decimal is assumed to be the default. "0d" can optionally precede the

decimal number. Hexadecimal numbers must be written with a preceding "0x".

Note: There is extensive amount of code that has been developed to design the Nibble Knowledge

Computer. All of the code for different aspects of the Software design is located in an online, web-

based Git repository hosting service. The Code is accessible through the link below:

 https://github.com/Nibble-Knowledge

Page 234 of 312

13. VGA Controller

13.1 Introduction

A VGA Controller is the interface between a VGA cable and the CPU. It is one of the most crucial

elements in ensuring the words or numbers you type on the keyboard end up on the monitor.

Signals transmitted from both the CPU will be evaluated within the controller and an appropriate

sequence of pixels will be stored in the controller's memory. The controller will then transmit these

pixels to the screen for display in the specified order.

The purpose of the VGA controller is to facilitate communication between the screen and the CPU.

The reason for the use is to turn the electrical signals transmitted by the CPU into valuable data

that is read by the screen when it is convenient for it. This allows the VGA controller to run at its

required minimum speed (25.175 MHz) without the need for the CPU to be operating at the same

frequency.

VGA Port

The VGA port is the location where the VGA cable plugs into the controller. All communication

from the controller to the screen is transmitted through this port. The protocol between the VGA

cable and the VGA Controller is partly analog and semi-synchronous. There are five important

signals sent through the VGA port: The Vsync, Hsync, Red, Green and Blue signals. First the

graphics card inside the monitor analyzes the Vsync and Hsync signals to determine the resolution

being requested. In our case this is 640x480 at 25.175MHz (the minimum requirement). Then

based on the resolution (specifically on the resulting frequency) it samples the analog signals Red,

Green and Blue to determine the color being displayed for a particular pixel. When Hsync is low

the screen repositions itself to begin displaying the next row of pixels. When Vsync is low the

screen repositions itself to begin the cycle over again. The VGA Port pin-outs are described in the

figure below.

Page 235 of 312

Figure 13.1: VGA Port Pin-Outs

In the Nibble Knowledge design, all other pins besides the five mentioned above were grounded

as the intention was to imply the minimum requirements and thus did not need the other pins.

Controller to VGA port Transmission

The controller is made of three major parts: the input block, the RAM/ROM and the output block.

The input block is not used for controller to VGA port transmission but the other two blocks are.

The output block consists of a series of counters that use a signal generated by a 25.175MHz crystal

oscillator to create three signals: Hsync, Vsync and Blank. Hsync and Vsync are used as above,

Blank is used to prevent pixels from being sent while Hsync and Vsync are resetting the screen.

One set of counters increment every rising edge of the oscillator and when they reach the value

640 (the width of the screen) activate the Blank signal to prevent pixels from being sent when they

are not needed. Once the counters reach 656 Hsync begins, when they reach 753 Hsync ends and

once they reach 800 Blank is turned off, the counters are reset and a second set of counters is

incremented. This second set is used to activate Vsync and Blank in a similar fashion, once they

reach the values of 480, 490, 492 and 525 the Blank signal is activated, Vsync Begins, Vsync ends

and the Blank signal is deactivated respectively.

Inside of the RAM/ROM are two memory banks: a character buffer and a pixel map. When the

CPU is not attempting to send data to the controller the controller is in read mode. While in read

mode the controller constantly cycles through the character buffer, sending the resulting ASCII

code to the pixel map. The pixel map then looks up the ASCII code and outputs the corresponding

pixels associated with whichever row is required of the ASCII character being requested.

Page 236 of 312

CPU to Controller Transmission

The input block is set up as a finite state machine with four states, data1, data2, write and wait. By

receiving a falling edge on the write signal sent by the CPU and confirming that the parity and

select lines are high and low respectively the machine cycles through the four states. In the data

states, data being presented on the line is sampled and stored in either the top 4 bits or the bottom

4 bits of an 8 bit DFF array. Once these two states have occurred, the next state (write) ignores the

data on the bus but simply informs the RAM/ROM to enter write mode and grab the data. Finally,

the wait state is used as a “cooldown” period where nothing happens in order to allow for time for

the memory in the RAM/ROM to update. In the RAM/ROM the controller enters write mode after

receiving the above mentioned signal. While in this mode the character buffer takes the values

stored in the DFF’s of the input block and stores them in memory. Then the controller enters read

mode again.

13.2 FPGA Implementation

As an intermediate step in the development of the discrete VGA controller we created a FPGA

implementation of the peripheral. It was a great first step because it allowed us to use a behavioral

approach at designing the peripheral. Most importantly it simplified the task of creating a discrete

circuit because we were able to take the VHDL code and transform it into discrete logic chips.

Example: VHDL code to discrete logic chips conversion

VHDL code: if (cpu_write = '0' and parity_check = '1')

Logic chips: A 2 IN – 1 OUT AND gate

● Inputs: NOT cpu_write, parity_check

● Output: the result of the following 2 signals AND gated together

13.3 Discrete Implementation

Receiving Signals from the CPU

As stated above, when the CPU has data for the VGA controller it sends four “pulses” along the

write line while selecting the VGA controller. During these pulses a falling edge detector will

cause an update to a finite state machine causing either the reception of 4 bits of data from the

Page 237 of 312

CPU or the transmission of 8 bits of data to the character buffer memory. After the data has been

received the controller goes back to read mode.

The main components of this write cycle are a system of DFF’s, counters and RAM. One counter

is activated on the falling edge of the write signal (provided that the parity check and chip select

match) and is used to determine the current state of the finite state machine. Its output is sent to a

demultiplexer which outputs signals to either the top 4 bits of a DFF array or the bottom 4 bits of

the same array or to the RAM/ROM.

Inside the RAM/ROM, there a system of counters used to keep track of the current character being

written. When a signal is sent from the input block these counters increment and then pass their

data as the address to the character buffer where the data being sent from the input block is then

stored.

Sending Signals to the VGA port

As stated above, the Hsync and Vsync values are determined by two systems of counters as well

as a series of AND Gates and two DFF’s being fed the inverse of their output value (making them

small, 1 bit counters). The other signal created is Blank which simply sets the output to zero when

it is on and does not allow a new character to be processed. When Blank is not on, the output block

sends a pulse every eight clock cycles (through the same process as HSYNC) to the RAM/ROM

to update to the next character. Every time HSYNC occurs it also sends a signal to inform the

RAM/ROM to write the next row of each character.

In the RAM/ROM like during the write cycle a system of counters is used to keep track of the

current character being read. This character is then passed to the pixel memory where it is

combined with the current row being used and the appropriate set of data is sent to the output block

to be used as a set of pixels.

Page 238 of 312

Figure 13.2: VGA Controller High Level Block Diagram

Overview of the entire Discrete Circuit

Figure 13.3: VGA Controller Discrete Overview

Page 239 of 312

The Input Block Discrete Circuit

Figure 13.4: VGA Controller Input Block Circuit

The RAM / ROM Discrete Circuit

Figure 13.5: VGA Controller RAM / ROM Circuit

Page 240 of 312

The Output Discrete Circuit

Figure 13.6: VGA Controller Output Block Circuit

The HSYNC Discrete Circuit

Figure 13.7: VGA Controller HSYNC Circuit

Page 241 of 312

The VSYNC Discrete Circuit

Figure 13.8: VGA Controller VSYNC Circuit

13.4 Testing the VGA Controller

The validation tests relevant to the VGA controller verified that the:

 VGA design successfully worked virtually

 VGA design worked with push button inputs

 Discrete design worked with push button inputs and as a fully functional discrete peripheral

Although validation was a great tool for verifying the successfulness of our design it also provided

us with the information and tools needed to move from an FPGA implementation to a fully

functional discrete implementation of the VGA Controller.

Validation Testing Details/Procedures and Results

The validation tests completed for this peripheral include:

1. Test bench testing (waveform simulation) at a software level to verify the behavior of the

VHDL code written for the FPGA implementation of the VGA keyboard controller.

2. LED testing for FPGA implementation of the VGA keyboard controller with push button

inputs for CPU signals

3. Full system testing for FPGA implementation of the VGA keyboard controller with push

button inputs for CPU signals

4. Virtually testing the designed discrete VGA controller within LogiSim with virtual push

button inputs and LED outputs to verify behavior

5. LED testing for discrete implementation of the VGA controller with push button inputs for

CPU signals

Page 242 of 312

6. Full system testing with discrete CPU and VGA controller

During the assembling of the Discrete VGA Keyboard Controller a multi-meter was used to trace

specific signals from input to output to verify if the circuit was working correctly. Also, a probe

kit was used to trace multiple signals at once when necessary. This was an excellent method to

detect any errors in the construction of the discrete circuit. We are quickly able to identify any

bugs and take the appropriate measures to remedy the problems. Overall validation tested was

valuable to not only ensure our controller worked as intended but it also helped in the designing

process when moving from a FPGA to a discrete implementation.

Note: There is extensive amount of code that has been developed to design the Nibble Knowledge

Computer. All of the code for different aspects of the VGA Controller is located in an online, web-

based Git repository hosting service. The Code is accessible through the link below:

https://github.com/Nibble-Knowledge

13.5 VGA Controller Specifications

Component Specifications

Controller Voltage Logic 5.00 V

CMOS/TTL Chips Vcc 5.00 V

CMOS/TTL Chips VIH 2 – 3.15 V

CMOS/TTL Chips VIL 0.8 – 1.53 V

Port Red, Green, Blue Lines 0.00 V to 0.70 V

Clock Frequency 25.175 MHz minimum

Table 13.1: VGA Controller Specifications

Page 243 of 312

14. CPU and Peripheral Integration

The project encompasses the design of a 4-bit computer system that holds an educational value,

where an individual would be able to learn the internal functionalities of a CPU. The high level

design is divided into four subsections to clearly explain the implementation of the preferred

solution. This will enable us to show how the various components of the solution are related and

interact with each other.

Overall Design: CPU and Connected Devices

The overall design consists of CPU, Memory, Peripheral Controllers, Peripheral Devices and a

Peripheral Bus. The five peripheral devices are the Serial Network, VGA Monitor, IDE Hard

Drive, PS/2 Keyboard and Speaker. The Serial Communication will be used to communicate with

a local area network. The VGA Monitor will display a visual output, while the speaker will output

audio waveforms. The PS/2 keyboard will be able to take user input. The CPU controls all the

above processes. Each of the peripheral devices will be connected to their own controller device,

which is connected by a 4-bit data bus to the CPU. The controllers will govern the interaction

process between the peripheral devices and the CPU, for instance, data transfer, error detection,

communication and timing control. Both RAM and a boot ROM will to store data for execution.

Page 244 of 312

Figure 14.1: A Diagram of CPU and Connected Devices.

The Bus – Connection between CPU and an External Device

A computer bus is a component that transfers information between different devices. Different

protocols can be used for a bus such as master-slave, taking turns, or open communication. Either

in the device interface or in the protocol itself you’ll usually find safeties in place so that the

information is not corrupted in transit and that the correct device is sending or receiving

information.

Communication Protocols

In everyday life we experience many protocols such as saying hello before talking to someone.

These protocols allow us to interact in a predictable manner so that we make sure the other person

is listening or that you don’t all talk at once.

Page 245 of 312

Three examples in the computer world are as follows:

Master-slave

This protocol says that a device is declared the master and decides who gets to talk on the bus and

who gets to listen.

Taking turns

This protocol requires that a token is passed around. If you have the token, you can speak and in

this type of bus everyone listens and decides independently if the information is pertinent for them.

Open communication

In this protocol everyone is talking and listening at the same time. This requires that you have

ways to differentiate one device from the next. Ways to do this might include a name or frequency

selection. This can be difficult as it is easy to interfere with other simultaneous transmissions.

Think of trying to talk in a loud room.

The Nibble Knowledge Bus

The Nibble Knowledge Bus uses a master-slave protocol and the CPU chooses which peripheral

that it communicates with at all times.

Page 246 of 312

Figure 14.2: High Level Diagram of the Bus

The Nibble Knowledge bus uses the Chip Select (CS) lines to select which peripheral it wants to

communicate with. This connects the data lines and the Write (W), Read (R), and Ready (Re) to

their counterparts on the correct peripheral. If Read is high then the CPU is requesting data from

the peripheral, however, if Write is high the CPU is wanting to send data to the peripheral. Ready

is what the peripheral uses to tell the CPU that it has sent or received the data. At any time if the

Parity Check (PC) is not high then there was a transmission error and the devices must

independently decide what to do.

An example of communication between the CPU and a peripheral would look like the following:

Page 247 of 312

CPU Write to Peripheral

Figure 14.3: Communication – CPU Writes to Peripheral

CPU Reads from Peripheral

Figure 14.4: Communication – CPU Reads from Peripheral

Figure 89: Low Level Diagram of the Bus

Page 248 of 312

15. Glossary

Adder (electronics): An adder is a digital circuit that performs the addition of numbers.

Arduino: Arduino is an open source electronic prototyping platform that allows creating

electronics projects that are controlled by a microcontroller. It is based on an AVR microcontroller

and includes an IDE and a C-like language for programming the device.

Assembly Language: An assembly language at its lowest level is a set of mnemonics for the

machine code of a CPU. It may be augmented by macros and labels to ease the programming of

the device.

BASIC Code: BASIC languages are a family of procedural programming languages that share a

similar syntax derived from the original Dartmouth BASIC language, and are developed usually

to be learned easily by people who are new to programming while also being easily to implement

on the computer.

BeagleBone Black: BeagleBone Black is an open hardware, single-board computer and

community-supported development platform for developers and hobbyists.

Binary File: A compiled executable (ready-to-run) file that contains data ready to be used by a

program.

Bitwise: A shift operator that takes two operands and shift the first one a number of bits that is

specified by the second operand. The operator used controls the direction of the shift.

Boot ROM: Boot ROM is a small piece of non-volatile memory that contains the executable code

used by the computer system to initialize devices and load necessary constructs into memory on

power-on.

Bus: A bus is a physical data connection shared between multiple different components or devices

that are connected to a CPU.

C Language: A high-level and general purpose programming language that mainly uses logical

and mathematical operators to develop firmware and portable applications.

C # Language: An object-oriented programming language that is based on C++ language, and it

combines the computing power of C++ with Visual Basic programming.

Clock: A particular type of signal that behaves like a square wave. It has only two levels, which

is zero (low) and one (high) where mostly the duration of a high level is the same as the zero level.

Clock (To Clock, Action): To open and close digital paths, allow or stop a process in timely

manner. In general, clocking a digital circuit means provide timing for the circuit.

Page 249 of 312

Control Unit: Establishes a method for the CPU to determine what information is stored in the

data coming out of the memory.

CMOS: It stands for Complementary metal-oxide-semiconductor. It is a technology used for

building digital logic and low power integrated circuits.

Compiler: A special program that translates statements in a high level programming language into

machine language so that it can be executed.

Control Unit: Establishes a method for the CPU to determine what information is stored in the

data coming out of the memory.

Cyclic Redundancy Check (CRC): CRC is an error-detecting code commonly used in digital

networks and storage devices to detect accidental changes to raw data. Blocks of data entering

these systems get a short check value attached, based on the remainder of a polynomial division

of their contents.

Digital to Analog Converter (DAC): DAC is an electronic circuit consisting of Operational

Amplifiers and common circuit elements such as resistor and capacitors that is used to convert an

analog signal to a digital signal.

Debouncer Circuit: A debouncer circuit is a simple circuit that counts clock cycles and resets if

the input changes while it is counting the clock cycles.

Demultiplexer: Demultiplexer is a circuit device (could be a chip) that has one input and more

than one output. It takes a single input signal and selects one of many data output lines via another

set of inputs. The amount of outputs is 2 to the power of the number of selection inputs. It is

abbreviated as DEMUX.

Ethernet: Ethernet is a computer networking technology most commonly used for local area

networks (LAN). It uses twisted pair copper cables as the physical media, has speeds between 10

megabits and 40 gigabits, and is standardized in IEEE 802.3.

FAT32: FAT32 is a simple file system based on a File Allocation Table, which is used to keep

track of what files are allocated to what blocks on the hard drive. FAT12 was the original

specification, and FAT32 extends this with directories and 32-bit addressing of blocks allowing

for larger files and hard drives.

Flip-Flop: Flip Flop is device (chip), that is a circuit based on bipolar junction transistors that has

two stable states and can be used to store state information. The circuit is described as sequential

logic.

Page 250 of 312

FPGA: Field Programmable Gate Arrays (FPGAs) are semiconductor devices that are based

around a matrix of configurable logic blocks (CLBs) connected via programmable interconnects.

FPGAs can be reprogrammed to desired application or functionality requirements after

manufacturing.

Graphical User Interface (GUI): It is a type of interface, which allows the user to interact with

the computer through graphic elements instead of text characters.

Hard Drive: Hard Drive is a non-volatile data storage device used for storing and retrieving digital

information based on a rotating magnetic platter.

Holding Register: A Holding register is a digital device that stores incoming data from a given

data bus.

IDE Controller: IDE stands for Integrated Drive Electronics. It is the original standard of

connecting to hard drives, originating the idea of standardizing the interface between the computer

and the hard drive by including sufficient electronics on the hard drive to directly control the

mechanical movement of the hard drive and only requiring the computer to implement the IDE

messaging standard to communicate with a wide variety of hard drives.

Instruction Set: Also known as Instruction Set Architecture (ISA). It is a group of commands for

a CPU in a machine language that a computer or a microprocessor understand.

Kit: Kit in the sense of this document refers to the discrete 4-bit computer kit that will be

comprised of all the parts necessary to build the 4-bit computer.

Latch: A Latch is an array of D flip-flops that acts as a holding register that stores incoming data

from the CPU’s data bus. The Latch is used to ensure the correct data is sent down the bus at the

correct time.

Logical Block Addressing (LBA): LBA is a common scheme used for specifying the location of

blocks of data stored on a computer storage device.

Logic Gates: Logic Gates are electronic devices (chips) that make logical decisions based on the

different combinations of digital signals present on its inputs. A device that executes a logical

operation, on two or more inputs to produce one logical output.

Machine Code: Machine code is a sequence of machine instructions that is loaded into the

memory of a CPU and executed by the CPU.

Page 251 of 312

Macro Assembler: A higher level representation of an assembly language that includes structures

and instructions that abstract away certain details of the lower level assembly language to ease the

effort of programming the device.

Macro Instruction: A macro instruction is a group of assembly instructions that have been

compressed into a simpler form and appear as a single instruction.

Microprocessor: An integrated circuit that contains all the functions of a CPU.

Microsoft’s Visual Studio: An integrated development environment used to develop computer

programs and applications.

Multiplexer: Multiplexer is a circuit device (could be a chip) that has greater inputs than outputs.

It switches one of many inputs through a single common output by the application of control

signals. The amount of inputs is 2 to the power of the control signals.

OP Code: A single machine language instruction that can be performed by the CPU.

Operational Amplifier: An Operational Amplifier, commonly referred as op-amp, is a voltage-

amplifying device designed to use with external feedback components. Originally designed for

analogue computers where they performed mathematical operations, op-amps are now popular for

their versatility and high amplification potential.

Papilio One FPGA: The Papilio One FPGA is a brand of FPGA that is designed by Gadget

Factory, which is an Open Source Hardware development community. It is an expandable

development board for the design and prototyping of digital circuit projects. It has a Xilinx Spartan

3E FPGA chip to provide all digital logic required for the design.

Parser: A program that can receive its inputs in various forms and break them up into parts.

Parity Check: A parity check bit is a bit added to the end of a string of binary code that indicates

whether the number of bits in the string with the value one is even or odd. Parity bits are used as

the simplest form of error detecting code.

PC Register: The PC register is a 16-bit flip-flop. The output of the flip-flop is split and outputted

to the memory selected mux and also to a 16-bit full adder that increments the PC by one.

Peripherals: In the context of this report, the term peripheral refers to five external devices which

are interfacing with: the IDE Hard Drive, VGA Monitor, Ethernet Network, PS/2 Keyboard and

Audio Speaker.

Potentiometer: A two or three terminal resistor with a sliding or rotating contact that can form an

adjustable voltage divider or a variable resistor.

Page 252 of 312

PS/2 Controller: PS/2 controller is used to communicate with a PS/2 keyboard. It provides an

interface to the PS/2 protocol, handling the data transmission, error detection and the timing

control.

PS/2 Keyboard: A PS/2 keyboard is a keyboard that uses the PS/2 serial interface to send the

information on key presses from the keyboard to the PS/2 controller.

RAM: RAM stands for Random Access Memory. It is a type of computer memory that can be

accessed randomly; that is, any cell of memory can be directly addressed at any time.

Raspberry Pi: Raspberry Pi is an ARM-based computer that usually is used with Linux. It is

product designed to teach programming through do-it-yourself projects.

ROM: ROM stands for Read-Only Memory. Originally, these devices were memory devices

where the data was set at construction time, and could not be altered; but now ROM devices are a

family of non-volatile memory components that are usually defined by their use in being rarely

written to.

Shift Register: In digital circuits, a shift register is a cascade of flip flops, sharing the same clock,

in which the output of each flip-flop is connected to the input data of the next flip-flop in a chain,

resulting in a circuit that shifts by one position.

Sound Card: The Personal Computer (PC) sound card is a removable computer expansion card,

which, under the control of computer programs can input and output sound. The purpose of the

sound card is to provide the audio for applications such as games, movies and music.

Strobe (Signal): To strobe the signal means to set the signal to logic low or 0 for a predetermined

amount of time and then setting the signal back to logic high or 1.

Testbench: Testbenching refers to the method employed in VHDL programming to test and

troubleshoot a design before building the actual circuit.

TTL Flip-Flop: Transistor-Transistor Logic Flip Flop is device (chip), that is a circuit based on

bipolar junction transistors that has two stable states and can be used to store state information.

The circuit is described as sequential logic.

TTL Logic Gates: Transistor-Transistor Logic Gates are electronic devices (chips) that are based

on bipolar junction transistors and make logical decisions based on the different combinations of

digital signals present on its inputs.

Tweet: A tweet is a posting made on the social media website Twitter.

Unary: A type of mathematical operator that has only one operand

Page 253 of 312

User Space: User space is the portion of system memory in which processes run that directly

interact with the user.

VGA: VGA is a standard for transmitting information for a monitor to display images based on

an analogue signal representing color and a set of two clock signal that determine what pixel is

being addressed.

VGA Controller: A VGA controller handles the low-level details of communicating with a

monitor over the VGA protocol.

Virtual Machine (VM): It is a copy of a certain hardware or computer system that can be installed

on a software that can imitates that system to give users the same experience as they would have

on the actual system.

Page 254 of 312

16. Appendix

16.1 Oscillator Circuit – Alternate Design

A 16.0 kHz frequency is needed for the oscillator to ensure all 16 bits are properly passed into the

counter. Vcc is connected to the +5.0 V.

Figure 16.1.1: Appendix A1 Top View of SA555N Timer Chip

Figure 16.1.2: Appendix A1 Timer Circuit Connections

The counter is a CD4520. It is a 4-bit dual up counter so only one side of the counter integrated

circuit is necessary. The figure on the left shows the green grounded pins. Since this circuit is also

a digital circuit, VDD is powered at +5.00 V. VSS is grounded. Q1-Q4 pins are connected to the

d0-d3 pins on the 4508 latch. As shown below, enable is connected to +5.00 V, while reset is

connected to the ground. The output from the 555 timer integrated circuit is connected to the clock

of the counter.

GND

Trigger

Output

Reset

VCC

Control
Voltage

Threshold

Discharge

Page 255 of 312

Figure 16.1.3: Appendix A1 Top View of CD4520BE Counter

Figure 16.1.4: Appendix A1 CD4520BE Counter Connections

Complete Oscillator Circuit

Figure 16.1.5: Appendix A1 Oscillator Circuit

Screen clipping taken: 12/10/2015 4:43 PM

Page 256 of 312

Table Four: Truth Table for the CD4520BE
Clock Enable Reset Action

1 0

Increment
counter

0

0
Increment

counter

X 0 No change

X

0 No change

0 0 No change

1

0 No change

X X 1
Q1-Q4 = 0 (low

state)
Table 16.1.1: Appendix A1 Truth Table for CD4520BE Chip

Page 257 of 312

16.2 IDE Controller – Arduino Test Code

Arduino Code for Testing

short int R = 9;

short int W = 8;

short int CS = 7;

short int data[4] = {2,3,4,5}; //5 is d0

int period = 1;

char value;

void setup() {

 // Set R as output

 pinMode(R,OUTPUT);

 pinMode(W, OUTPUT);

 pinMode(CS, OUTPUT);

 pinMode(10, INPUT);

 digitalWrite(CS, LOW);

 digitalWrite(R, LOW);

 digitalWrite(W, LOW);

 digitalWrite(CS, HIGH);

 digitalWrite(R, HIGH);

 delay(period);

 digitalWrite(R, LOW);

 delay(period);

 digitalWrite(CS, LOW);

 //Set data as output to begin

 for(int i = 0; i < 4; i ++){

 pinMode(data[i], OUTPUT);

 }

 Serial.begin(9600);

}

void loop() {

// readHD(0xF);

// readHD(0xF);

//

// //Set up Write

// Serial.println("/-------------Begining of Write to drive-------------/\nSetup:");

// writeHD(0xA, 0, 0, 0, 1);

// writeHD(0xB, 0, 0, 0, 0);

// writeHD(0xC, 0, 0, 0, 0);

// writeHD(0xD, 0, 0, 0, 0);

// writeHD(0xE, 0, 0, 0xE, 0);

// Serial.println("\nSending write command:");

// writeHD(0xF, 0, 0, 0x3, 0x0);

//

Page 258 of 312

// Serial.println("\n/-----------------Writing to HD-----------------/\n");

//

// for(int i = 0; i < 64; i++){

// writeHD(0x8, 0x4, 0x9, 0x4, 0x8);

// writeHD(0x8, 0x4, 0x2, 0x2, 0x0);

// writeHD(0x8, 0x4, 0xE, 0x4, 0x5);

// writeHD(0x8, 0x2, 0x0, 0x2, 0x0);

// }

// Serial.println("\n\n/-------------Finished writing to HD-----------/\n");

//

// for(int i = 0; i < 5; i ++){

// readHD(0xF);

// }

 Serial.println("/-------------Begining of Read from drive----------------/\nSetup:");

 writeHD(0xA, 0, 0, 0, 1);

 writeHD(0xB, 0, 0, 0, 0);

 writeHD(0xC, 0, 0, 0, 0);

 writeHD(0xD, 0, 0, 0, 0);

 writeHD(0xE, 0, 0, B1110, 0);

 for(int i = 0; i < 5; i ++){

 readHD(0xF);

 }

 Serial.println("\n/----------Sending read command----------/");

 writeHD(0xF, 0x0, 0x0, 0x2, 0x0);

 Serial.println("\n/-----------------Reading from HD-----------------/\n");

 for(int i = 0; i < 5; i ++){

 readHD(0xF);

 }

 for(int i = 0; i < 256; i++){

 readHD(0x8);

// Serial.println("/--------------Sending Value to Sound-------------/");

// digitalWrite(CS, HIGH);

// digitalWrite(W, HIGH);

// writeData(value);

// digitalWrite(W, LOW);

// digitalWrite(CS, LOW);

// Serial.println("/-------------Finished Writing to Sound-------------/");

 }

 Serial.println("\n\n/-------------Finished Reading from HD-----------/\n");

Page 259 of 312

 for(int i = 0; i < 5; i ++){

 readHD(0xF);

 }

 readHD(0xA);

 readHD(0xB);

 readHD(0xC);

 readHD(0xD);

 readHD(0xE);

 readHD(0x9);

 while(1){

 }

}

//Reads data from the 4 bit data lines

void readData(){

 //Set data as input to read

 for(int i = 0; i < 4; i ++){

 pinMode(data[i], INPUT);

 }

 char c = 0;

 for(int i = 0; i < 4; i++){

 if(digitalRead(data[i]) == HIGH)

 {

 c |= (1 << (3-i));

 //Serial.print("1");

 }

 //else

 //Serial.print("0");

 }

 Serial.print(c, HEX);

 Serial.print(" ");

 value = c;

}

//Writes data to the 4 bit data lines

void writeData(int val){

 //Set data as output to write

 for(int i = 0; i < 4; i ++){

Page 260 of 312

 pinMode(data[i], OUTPUT);

 }

 int check = 1;

 for(int count = 3; count >= 0; count--){

 if((val & check) == check)

 digitalWrite(data[count], HIGH);

 else

 digitalWrite(data[count], LOW);

 check = check << 1;

 }

}

//Complete write to a HD register

void writeHD(int cmd, int d3, int d2, int d1, int d0){

 Serial.print("Writing: 0x");

 Serial.print(d3, HEX);

 Serial.print(d2, HEX);

 Serial.print(d1, HEX);

 Serial.print(d0, HEX);

 Serial.print(" to register: 0x");

 Serial.print(cmd, HEX);

 Serial.print("\n");

 // digitalWrite(CS, LOW);

 delay(period);

 digitalWrite(W, HIGH);

 delay(period);

 writeData(cmd);

 delay(period);

 digitalWrite(W, LOW);

 delay(period);

 digitalWrite(W, HIGH);

 delay(period);

 writeData(d3);

 delay(period);

 digitalWrite(W, LOW);

 delay(period);

 digitalWrite(W, HIGH);

 delay(period);

 writeData(d2);

Page 261 of 312

 delay(period);

 digitalWrite(W, LOW);

 delay(period);

 digitalWrite(W, HIGH);

 delay(period);

 writeData(d1);

 delay(period);

 digitalWrite(W, LOW);

 delay(period);

 digitalWrite(W, HIGH);

 delay(period);

 writeData(d0);

 delay(period);

 digitalWrite(W, LOW);

 delay(period);

 digitalWrite(W, HIGH);

 delay(period);

 digitalWrite(W, LOW);

 delay(period);

 digitalWrite(W, HIGH);

 delay(period);

 digitalWrite(W, LOW);

 delay(period);

 digitalWrite(W, HIGH);

 delay(period);

 digitalWrite(W, LOW);

 delay(period);

 digitalWrite(W, HIGH);

 delay(period);

 digitalWrite(W, LOW);

 delay(period);

 // digitalWrite(CS, HIGH);

}

//Complete Read of a HD register

void readHD(int cmd){

 Serial.print("Reading from register: 0x");

 Serial.print(cmd, HEX);

Page 262 of 312

 Serial.print(" Data read: ");

 // digitalWrite(CS, LOW);

 delay(period);

 digitalWrite(W, HIGH);

 delay(period);

 writeData(cmd);

 delay(period);

 digitalWrite(W, LOW);

 delay(period);

 digitalWrite(R, HIGH);

 delay(period);

 digitalWrite(R, LOW);

 delay(period);

 digitalWrite(R, HIGH);

 delay(period);

 digitalWrite(R, LOW);

 delay(period);

 digitalWrite(R, HIGH);

 delay(period);

 digitalWrite(R, LOW);

 delay(period);

 digitalWrite(R, HIGH);

 delay(period);

 digitalWrite(R, LOW);

 delay(period);

 digitalWrite(R, HIGH);

 delay(period);

 readData();

 digitalWrite(R, LOW);

 delay(period);

 digitalWrite(R, HIGH);

 delay(period);

 readData();

 digitalWrite(R, LOW);

 delay(period);

 digitalWrite(R, HIGH);

 delay(period);

Page 263 of 312

 readData();

 digitalWrite(R, LOW);

 delay(period);

 digitalWrite(R, HIGH);

 delay(period);

 readData();

 digitalWrite(R, LOW);

 delay(period);

 Serial.print("\n");

// digitalWrite(CS, HIGH);

}

Note: There is extensive amount of code that has been developed to design the Nibble Knowledge

Computer. All of the code for different aspects of the IDE Controller is located in an online, web-

based Git repository hosting service. The Code is accessible through the link below:

https://github.com/Nibble-Knowledge

Page 264 of 312

16.3 PS/2 Keyboard Controller VHDL Code: Main

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity keyboard is

 PORT (

 -- CPU (bus) inputs/outputs

 clk: in STD_LOGIC; -- CPU 5 MHz clock

 cpu_read:in STD_LOGIC; -- Needs to be logic high in order for the cpu to read

from the PS/2 Controller

 cpu_write:in STD_LOGIC; -- Unused

 parity_check:in STD_LOGIC; -- Dealt with by the Parity check circuit

 chip_select:in STD_LOGIC; -- Needs to be logic high (PS/2 Controller selected by

CPU) in order for the CPU to read data from the PS/2 Controller

 ready: out STD_LOGIC := '0'; -- Goes to logic high when data is ready to be sent

to CPU

 nibble: out STD_LOGIC_VECTOR(3 downto 0); -- 4 bit data line from PS/2

Controller to CPU

 -- DC Power Source & Ground is also wired to the Keyboard Controller

 -- Keyboard inputs

 ps2_clk: in STD_LOGIC; -- PS/2 Keyboard Clock signal

 ps2_data: in STD_LOGIC; -- PS/2 Keyboard Data signal

 -- Reset input

 reset: in STD_LOGIC

);

end keyboard;

architecture Behavioral of keyboard is

-- PS/2 CLK Rising Edge Determination:

signal ps2_clk_dffs: STD_LOGIC_VECTOR(1 downto 0);

-- PS/2 DATA signals:

signal ps2_word: STD_LOGIC_VECTOR(10 downto 0);

signal ps2_code: STD_LOGIC_VECTOR(7 downto 0);

signal ps2_select: STD_LOGIC := '0'; -- Default to high nibble

-- PS/2 IDLE signals:

signal high_nibble_ready: std_logic := '0'; -- High nibble is ready to be read by CPU

signal high_nibble_out: std_logic := '0'; -- High nibble has been passed through 8x4 Mux

signal low_nibble_ready: std_logic := '0'; -- Low nibble is ready to be read by CPU

Page 265 of 312

signal low_nibble_out: std_logic := '0'; -- Low nibble has been passed through 8x4 Mux

signal end_of_trans: std_logic := '0'; -- transmission is completed

signal bit_counter: integer range 0 to 11;

signal bits_shifted_in: std_logic := '0';

-- DCM 32 to 5 MHz (Digital Clock Manager - reducing clock speed from 32 to 5 MHz)

signal bf_clk: std_logic;

-- Declare 8 to 4 mux component

component eight_to_four_mux is

 port(

 high_nibble : in std_logic_vector (3 downto 0);

 low_nibble : in std_logic_vector (3 downto 0);

 s : in std_logic;

 out_nibble : out std_logic_vector (3 downto 0);

 no_data : in std_logic

);

end component;

--Declare Digital clock manager (32 MHz to 5 Mhz)

COMPONENT DCM_32to5

 PORT(

 CLKIN_IN : IN std_logic;

 CLKFX_OUT : OUT std_logic;

 CLKIN_IBUFG_OUT : OUT std_logic;

 CLK0_OUT : OUT std_logic

);

 END COMPONENT;

begin

-- Instantiate the 8 to 4 Mux component

NIBBLE_SELECTOR: eight_to_four_mux

 port map (

 high_nibble => ps2_code(7 downto 4),

 low_nibble => ps2_code(3 downto 0),

 s => ps2_select,

 no_data => chip_select,

 out_nibble => nibble);

--Instantiate the Digital Clock Manager

Inst_DCM_32to5: DCM_32to5

Page 266 of 312

 PORT MAP(

 CLKIN_IN => clk,

 CLKFX_OUT => bf_clk,

 CLKIN_IBUFG_OUT => open,

 CLK0_OUT => open

);

-- Determine end of transmission and output results in two - four bit nibbles

process(bf_clk)

begin

 if (reset = '1') then

 ready <= '0';

 low_nibble_out <= '0';

 high_nibble_out <= '0';

 low_nibble_ready <= '0';

 high_nibble_ready <= '0';

 end_of_trans <= '0';

 ps2_clk_dffs <= "00";

 ps2_word <= "00000000000";

 bit_counter <= 0;

 bits_shifted_in <= '0';

 elsif (rising_edge(bf_clk)) then

-- Syncronizing circuitry (shift serial bits into 11 bit shift register on rising edge of PS2 clock

signal)

 if (bits_shifted_in = '0') then -- if all 11 bits haven't been shifted in, continue to shift

 ps2_clk_dffs(0) <= ps2_clk;

 ps2_clk_dffs(1) <= ps2_clk_dffs(0);

 end if;

-- Detecting end of transmission counter and 11 bit serial in, 8 bit parallel out shift register

 if ((ps2_clk_dffs(0) = '0') and (ps2_clk_dffs(1) = '1') and bit_counter /= 11) then

 ps2_word <= ps2_data & ps2_word(10 downto 1);

 bit_counter <= bit_counter + 1;

 elsif (bit_counter = 11 and end_of_trans = '0' and high_nibble_ready <= '0') then

 ps2_code <= ps2_word(8 downto 1);

 high_nibble_ready <= '1';

 ready <= '1'; -- Data is available on PS/2 keyboard controller peripheral

(CPU can read in two nibbles)

 end if;

-- Split 8 bit word into 2 - 4 bit nibbles and control the ready line

 -- High nibble is placed on bus and CPU is free to read data

Page 267 of 312

 if (cpu_read = '1' and chip_select = '0' and parity_check = '1' and high_nibble_ready

= '1' and high_nibble_out <= '0') then

 ps2_select <= '1';

 high_nibble_out <= '1';

 end if;

 -- CPU sets it's 'read' signal to zero, high nibble read complete

 if (cpu_read = '0' and parity_check = '1' and high_nibble_out = '1' and

low_nibble_ready <= '0') then

 low_nibble_ready <= '1';

 end if;

 -- Low nibble is placed on bus and CPU is free to read data

 if (cpu_read = '1' and chip_select = '0' and parity_check = '1' and low_nibble_ready

= '1' and low_nibble_out = '0') then

 ps2_select <= '0';

 low_nibble_out <= '1';

 end if;

 -- CPU sets it's 'read' signal to zero, low nibble read complete

 if (cpu_read = '0' and parity_check = '1' and low_nibble_out = '1' and end_of_trans

<= '0') then

 end_of_trans <= '1';

 ready <= '0'; -- One make code has successfully been read by CPU

 end if;

 -- PS/2 keyboard controller resets all DFF's and prepares for new data to be sent

from PS/2 keyboard

 if (end_of_trans = '1') then

 low_nibble_out <= '0';

 high_nibble_out <= '0';

 low_nibble_ready <= '0';

 high_nibble_ready <= '0';

 end_of_trans <= '0';

 bit_counter <= 0;

 bits_shifted_in <= '0';

 end if;

end if;

end process;

end Behavioral;

Note: There is extensive amount of code that has been developed to design the Nibble Knowledge

Computer. All of the code for different aspects of the PS/2 Keyboard Controller is located in an

online, web-based Git repository hosting service. The Code is accessible through the link below:

https://github.com/Nibble-Knowledge

Page 268 of 312

16.4 PS/2 Keyboard Controller – Internal Multiplexer VHDL Code

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity eight_to_four_mux is

 port(

 high_nibble : in std_logic_vector (3 downto 0);

 low_nibble : in std_logic_vector (3 downto 0);

 s : in std_logic;

 no_data : in std_logic;

 out_nibble : out std_logic_vector (3 downto 0)

);

end eight_to_four_mux;

architecture Behavioral of eight_to_four_mux is

begin

process(s, no_data)

begin

 if (no_data = '1') then

 out_nibble <= "ZZZZ"; -- no data put on data lines on bus (i.e. make code has been

read or no key has been pressed on the PS/2 keyboard)

 else

 if (s = '1') then

 out_nibble <= high_nibble; -- multiplexer selects the high nibble first (i.e.

bits 8-5 from 11 bit code sent to shift register)

 else

 out_nibble <= low_nibble; -- multiplexer selects the low nibble second (i.e.

bits 4-1 from 11 bit code sent to shift register)

 end if;

 end if;

end process;

end Behavioral;

Note: There is extensive amount of code that has been developed to design the Nibble Knowledge

Computer. All of the code for different aspects of the PS/2 Keyboard Controller is located in an

online, web-based Git repository hosting service. The Code is accessible through the link below:

https://github.com/Nibble-Knowledge

Page 269 of 312

16.5 Software – Complete CUTE Basic Compiler

The Cute BASIC Compiler takes a Cute BASIC file as an input and outputs a macro assembly file.

It parses through the CB file, line by line, and writes the appropriate macro instructions to a buffer.

Each line is checked for certain keywords until a match is found; when matched the program loads

a function appropriate for whatever keyword was found, translates the current line into a series of

macro instructions, and then goes to the next line. The macro is written to in the same order as it

is in the CB file, the only exception is for variables which are stored to a separate buffer as they

must be stored at the bottom of a macro file. When the end of the file is reached the instruction

buffer is output to the macro file, followed by the variable buffer.

#!/usr/bin/python

import sys

import os

#stack for keeping track of IF statements - holds line numbers of IF

ifStatementStack = []

endifStack = []

#stack for keeping track of LOOPWHILE statements - holds like numbers of LOOPWHILE

loopStatementStack = []

#giant buffer holding output

output = []

data = []

#list of names of variables

#format: VARNAME SIZE SIGN

variables = []

varnames = []

varsizes = []

varvals = []

funcnames = []

funcstack = []

returns = 0

signed = []

files = []

funcVars = []

baseaddress = -1

Page 270 of 312

identifiers = ["START" , "END", "SIGNED", "LET", "BE", "AS", "COMPLEMENT",

"NEGATE", "INCREMENT", "DECREMENT",

"NOT", "ADDRESSOF", "CONTENTOF", "IF", "ELSEIF", "ELSE", "ENDIF",

"LOOPWHILE", "ENDLOOP", "LOOPAGAIN", "EXITLOOP",

"EXITIF", "EARLYEND", "LABEL", "GOTO", "ADD", "SUBTRACT", "MODULUS",

"MULTIPLY", "DIVIDE", "ALSO", "EITHER", "AND",

"OR", "XOR", "NAND", "NOR", "XNOR", "LSHIFT", "RSHIFT", "LROTATE", "RROTATE",

"ADDRESSOF", "CONTENTOF", "FUNCTION",

"ENDFUNCTION", "RETURN", "RETURNS", "TAKES", "ASWELL"]

#Added by Naomi to allow specific static pointers to be used

validPointers = ["*CHIP_SELECT", "*STATUS_BUS", "*DATA_BUS"]

#Keeps track of which files have been included

included = []

#flags

hasstart = 0

hasend = 0

multicomment = 0

asmFunc = 0

#Checks the nibble length of the variable

#Takes name of variable

#Returns length of variable

def varLength(varname):

 if varname in varnames:

 index = varnames.index(varname)

 if(len(varsizes) > index):

 length = varsizes[index]

 #Assuming literals should be 4?

 else:

 #if length == None:

 length = 4

 return int(length)

#Check the length of two lines and return the difference between them (-# means var 1 is smaller

by # nibs, 0 means even, +# means var 1 is bigger by # nibs)

#Takes 2 variables

#Returns an integer (differnece in size)

def compareLength(varname1, varname2):

Page 271 of 312

 if(varname1 in varnames and varname2 in varnames):

 length1 = varLength(varname1)

 length2 = varLength(varname2)

 return length1 - length2

#Takes two variables

#Returns the length of the longer variable

def longer(var1, var2):

 longer = varLength(var1)

 if longer == None:

 longer = 4

 longer2 = varLength(var2)

 if longer2 == None:

 longer2 = 4

 if longer < longer2:

 longer = longer2

 return longer

#Checks if a value is a variable or literal, and adds the N_[] if its a literal

#Takes a potential variable

#Returns the same var, or an encased literal

def literal(var):

 if var not in varnames:

 var = "N_[" + var + "]"

 return var

#Writes the ASM code needed to perform signed or unsigned extension depending on variable

#Takes a variable and a size to extend to

#Returns the extended value label

def extend(var, difference):

 #Number of nibbles needed to extend by

 size = int(difference)

 cnt = 0

 length = varLength(var)

 total = length + difference

 #Sign extend

 if var in signed:

 extendedVar = var + str(total*4) + "signed"

 if(extendedVar not in varnames):

 data.append(var + str(total) + "signed: .data " + str(total) + " 0")

 varnames.append(extendedVar)

Page 272 of 312

 op = multinibOp(length, "MOV")

 output.append(op + " " + var + " INTO " + extendedVar + "[" + str((total - length

)) + "]")

 #TODO Not sure if im using signex right

 output.append("LOD " + var)

 output.append("SIGNEX ACC")

 #output.append(op + " ") Just taking this out for now, it messes up stuff.

 #Unsigned extend

 else:

 extendedVar = var + str(total) + "unsigned"

 if(extendedVar not in varnames):

 data.append(var + str(total) + "unsigned: .data " + str(total) + " 0")

 varnames.append(extendedVar)

 op = multinibOp(length, "MOV")

 output.append(op + " " + var + " INTO " + extendedVar + "[" + str((total - length

)) + "]")

 output.append("LOD N_[0]")

 #Fill the remaining values with the extended value

 #Wrong endianness

 #cnt = 0

 #while cnt < size:

 cnt = size - 1

 while cnt >= 0:

 output.append("STR "+ extendedVar + "[" + str(cnt) + "]")

 cnt -= 1

 return extendedVar

#Takes an operation and a size and returns the oepration with that size included

def multinibOp(length, op):

 if str(length) == "1":

 return op

 else:

 return op + str(int(length)*4)

 #return op + str(int(length))

#Checks if we are in a function, if we are change all labels to be the local version of the label

#Takes the splitline

Page 273 of 312

#Returns: the unaltered splitline or the splitline with function names appended

def localVars(splitline):

 if len(funcstack) > 0:

 cnt = 0

 #Check each word in splitline

 for word in splitline:

 num = word.isdigit()

 #If word is not an identifier or a number it is a label - therefore add

funcname_ before it

 if word not in identifiers and num == False:

 splitline[cnt] = funcstack[-1] + "_" + word

 cnt += 1

 return splitline

#Checks if a comment exists on the line

#Takes: a line from readlines()

#Returns: 1 if a comment is found, 0 otherwise

def checkComment(line):

 global multicomment

 continueBool = 0

 if len(line) > 1 and (line.find("#/") != -1):

 multicomment = 0

 continueBool = 1

 elif multicomment == 1:

 continueBool = 1

 elif len(line.strip()) > 1 and line.strip()[0] == "/" and line.strip()[1] == "#":

 multicomment = 1

 continueBool = 1

 elif len(line.strip()) > 0 and line.strip()[0] == "#":

 continueBool = 1

 return continueBool

#Checks if line contains start or end

#Takes: a line

def startEnd(line):

 cont = 0

 global hasstart

 global hasend

 if line.strip() == "START":

Page 274 of 312

 if hasstart == 1:

 print "START already declared"

 exit(1)

 else:

 hasstart = 1

 output.append("START:")

 cont = 1

 elif line.strip() == "END":

 if hasend == 1:

 print "END already declared"

 exit(1)

 else:

 hasend = 1

 output.append("END:")

 cont = 1

 return cont

#Checks if a line is asm or passthroc, if it is put it directly into output as is

#Takes: a splitline

#Returns: 1 if asm or passthroc is found, 0 otherwise

def asm_passthroc(splitline, linenum):

 global asmFunc

 cont = 0

 if splitline[0] == "ASM" or splitline[0] == "PASSTHROC" or asmFunc == 1:

 #If its a special variable function type

 if (len(splitline) > 1 and splitline[1] == "FUNCTION") or asmFunc == 1:

 asmFunction(splitline, linenum)

 else:

 del splitline[0]

 newline = ""

 for i in splitline:

 newline += i

 newline += " "

 output.append(newline)

 cont = 1

 return cont

#Checks if variable declaration is being performed

#Takes: a splitline

def variableDeclaration(splitline, linenum):

 cont = 0

Page 275 of 312

 if splitline[0] == "LET":

 #LET VAR - this should default a size and value

 #LET VAR AS SIZE- this should default a value

 #LET VAR BE VAL (SIGNED)- this should default a size, and if no signed default

unsigned

 #LET VAR AS SIZE BE VAL (SIGNED) - if no signed, default unsigned

 if splitline[1] in identifiers:

 print "Error line " + str(linenum) + ": can not use identifier " + splitline[1]

+ " as a variable name"

 #Disallow variable names starting with '*' unless we have them in our pointer list

(at top of file)

 #Also, don't allow pointers to have non-default size, or any initialisation value.

 if splitline[1][0] == '*' and (splitline[1] not in validPointers or len(splitline) > 2):

 print "Error line " + str(linenum) + ": special character * can only be used

with valid static labels"

 #Check if variable already exists

 for i in varnames:

 if (len(splitline) > 1 and i == splitline[1]):

 if(len(funcstack) > 0 and funcstack[-1] + "_" + splitline[1] not in

varnames):

 a = 0 #do nothing

 else:

 print "Error line " + str(linenum) + ": Variable name " +

splitline[1] + " already declared!"

 quit(1)

 # The variable name will be the second whitespace delimited field

 varnames.append(splitline[1])

 #print varnames

 temp = ''

 temp += splitline[1]

 defaultSize = 4 #4 nibble default

 defaultVal = 0

 #LET VAR

 if len(splitline) == 2:

 temp +=": .data " + str(defaultSize) + " " + str(defaultVal)

 varsizes.append(defaultSize)

Page 276 of 312

 #LET VAR AS or LET VAR AS BE

 elif splitline[2] == "AS":

 #LET VAR AS

 #Check that valid nib size

 if (splitline[3] not in ["1", "2", "4", "8", "16"]):

 print "Error on line: " + str(linenum) + ": Invalid size in nibbles, size

must be 1, 2, 4, 8 or 16"

 exit(1)

 if len(splitline) == 4:

 temp += ": .data " + splitline[3] + " " + str(defaultVal)

 varsizes.append(splitline[3])

 #LET VAR AS BE

 else:

 if(len(splitline) > 5 and splitline[5][0] == "\""):

 temp += ": .ascii " + splitline[5]

 varsizes.append(splitline[3])

 else:

 temp += ": .data " + splitline[3] + " " + splitline[5]

 varsizes.append(splitline[3])

 #LET VAR BE

 elif splitline[2] == "BE":

 if(splitline[3][0] == "\""):

 temp += ": .ascii " + splitline[3]

 varsizes.append(len(splitline[3]) * 8) #TODO not sure if this value

is correct

 else:

 temp += ": .data " + str(defaultSize) + " " + splitline[3]

 varsizes.append(defaultSize)

 #Invalid input

 else:

 print "Error on line " + str(linenum) + ": Invalid variable declaration " +

str(splitline)

 exit(1)

 #If last input is signed #TODO figure out what this should do

 if splitline[-1] == "SIGNED":

 signed.append(splitline[1])

 #Add the data declaration - unless it's a pointer!

 if (splitline[1] not in validPointers):

 data.append(temp)

 cont = 1

 return cont

Page 277 of 312

#Checks if unary math operations are being performed with assignments as the first thing on the

line

#Takes: a splitline

def unarymath(splitline, linenum):

 cont = 0

 if (len(splitline) > 3 and (splitline[0] in varnames) and (splitline[2] in ["COMPLEMENT",

"NEGATE", "INCREMENT", "DECREMENT", "NOT", "ADDRESSOF", "CONTENTOF"])):

 length = varLength(splitline[3])

 minnib = 1

 suffix = str(length*4)

 #unary math/bit/logic operators

 if splitline[2] == "COMPLEMENT":

 if length == minnib:

 output.append("NOT " + splitline[3] + " INTO " + splitline[0])

 else:

 output.append("NOT" + suffix + " " + splitline[3] + " INTO " +

splitline[0])

 elif splitline[2] == "NEGATE":

 if length == minnib:

 output.append("NEG " + splitline[3] + " INTO " + splitline[0])

 else:

 output.append("NEG" + suffix + " " + splitline[3] + " INTO " +

splitline[0])

 elif splitline[2] == "INCREMENT":

 if length == minnib:

 output.append("INC " + splitline[3] + " INTO " + splitline[0])

 else:

 output.append("INC" + suffix + " " + splitline[3] + " INTO " +

splitline[0])

 elif splitline[2] == "DECREMENT":

 if length == minnib:

 output.append("SUB " + splitline[3] + " N_[1] INTO " +

splitline[0])

 else:

 output.append("SUB" + suffix + " " + splitline[3] + " N_[1] INTO "

+ splitline[0])

 elif splitline[2] == "NOT":

 output.append("LOGNOT ACC")

 output.append("MOV " + splitline[3] + " INTO " + splitline[0])

Page 278 of 312

 #TODO Dont think this is right but have to double check - only accumualtor

lognot?

 elif splitline[2] == "ADDRESSOF":

 output.append("MOVADDR "+ splitline[3] +" INTO " + splitline[0])

 #TODO not sure if these parts are right

 elif splitline[2] == "CONTENTOF":

 if length == minnib:

 output.append("MOV " + splitline[3] + " INTO " + splitline[0])

 else:

 output.append("MOV" + suffix + " " + splitline[3] + " INTO " +

splitline[0])

 cont = 1

 return cont

#Checks if binary math operations are being performed with assignments as the first thing on the

line

#Takes: a splitline, linenumber

def binarymath(splitline, linenum):

 cont = 0

 if ((splitline[0] in varnames) and len(splitline) > 4 and splitline[2] != "CALL"):

 lengthDif = compareLength(splitline[2], splitline[4])

 #Get length of longer value

 length = longer(splitline[2], splitline[4])

 #print str(length) + "\n"

 #Lengths are the same or a val is a literal

 if lengthDif == 0 or lengthDif == None:

 var1 = literal(splitline[2])

 var2 = literal(splitline[4])

 #Extends the first or second value as needed

 #first var is smaller

 elif lengthDif < 0:

 diff = -lengthDif

 var1 = extend(splitline[2], diff)

 var2 = splitline[4]

 #First var is larger

 elif lengthDif > 0:

 diff = lengthDif

 var1 = splitline[2]

 var2 = extend(splitline[4], diff)

 minnib = 1

Page 279 of 312

 suffix = str(length*4)

 count = 0

 if splitline[3] == "ADD":

 if length == minnib:

 output.append("ADD " + var1 + " " + var2 + " INTO " + splitline[0])

 else:

 output.append("ADD" + suffix + " " + var1 + " " + var2 + " INTO "

+ splitline[0])

 elif splitline[3] == "SUBTRACT":

 if length == minnib:

 output.append("SUB " + var1 + " " + var2 + " INTO " + splitline[0])

 else:

 output.append("SUB" + suffix + " " + var1 + " " + var2 + " INTO "

+ splitline[0])

 elif splitline[3] == "MULTIPLY":

 #output.append("MULT " + var1 + " " + var2 + " INTO " + splitline[0])

 if length == 16:

 print "Error On line " + str(linenum) + ": Multiplication can not

handle larger than 32 bit variables."

 multiply(var1, var2, splitline[0], length, linenum)

 elif splitline[3] == "DIVIDE":

 output.append("DIV " + var1 + " " + var2 + " INTO " + splitline[0]) #TODO

This doesnt work yet

 elif splitline[3] == "MODULUS":

 output.append("MOD " + var1 + " " + var2 + " INTO " + splitline[0])

#TODO this doesnt work yet

 #binary bitwise operators

 elif splitline[3] == "AND":

 if length == minnib:

 output.append("AND " + var1 + " " + var2 + " INTO " + splitline[0])

 else:

 output.append("AND" + suffix + " " + var1 + " " + var2 + " INTO "

+ splitline[0])

 elif splitline[3] == "NAND":

 if length == minnib:

 output.append("NAND " + var1 + " " + var2 + " INTO " +

splitline[0])

 else:

 output.append("NAND" + suffix + " " + var1 + " " + var2 + " INTO

" + splitline[0])

Page 280 of 312

 elif splitline[3] == "OR":

 if length == minnib:

 output.append("OR " + var1 + " " + var2 + " INTO " + splitline[0])

 else:

 output.append("OR" + suffix + " " + var1 + " " + var2 + " INTO " +

splitline[0])

 elif splitline[3] == "NOR":

 if length == minnib:

 output.append("NOR " + var1 + " " + var2 + " INTO " + splitline[0])

 else:

 output.append("NOR" + suffix + " " + var1 + " " + var2 + " INTO "

+ splitline[0])

 elif splitline[3] == "XOR":

 if length == minnib:

 output.append("XOR " + var1 + " " + var2 + " INTO " + splitline[0])

 else:

 output.append("XOR" + suffix + " " + var1 + " " + var2 + " INTO "

+ splitline[0])

 elif splitline[3] == "XNOR":

 if length == minnib:

 output.append("XNOR " + var1 + " " + var2 + " INTO " +

splitline[0])

 else:

 output.append("XNOR" + suffix + " " + var1 + " " + var2 + " INTO

" + splitline[0])

 #TODO Not sure if this is right, or how to do right shifts/rots at all

 #binary bitshifting

 elif (splitline[3] == "RROTATE"):

 a = ''

 #RROT [label1] into [label2]

 elif (splitline[3] == "LROTATE"):

 while (count < int(splitline[4])) :

 output.append("LROT" + suffix + " "+ var1 + " INTO " +

splitline[0])

 count += 1

 #RROT [label1] into [label2]

 elif (splitline[3] == "RSHIFT"):

 a = ''

 elif (splitline[3] == "LSHIFT"):

 while (count < int(splitline[4])) :

Page 281 of 312

 output.append("LSHIFT" + suffix + " "+ var1 + " INTO " +

splitline[0])

 count += 1

 #binary logical operators

 elif splitline[3] == "ALSO":

 #Not sure if this is correct or not TODO (for both also + either)

 #Check if first val = 0 - if it is jump to fail

 output.append("JMPEQ N_[0] " + var1 + " TO FALSE" + str(linenum))

 #check second val = 0, if it is jump fail

 output.append("JMPEQ N_[0] " + var2 + " TO FALSE" + str(linenum))

 #If made it here both are non0 so true

 output.append("MOV N_[1] INTO " + splitline[0])

 output.append("LOD N_[0]")

 output.append("JMP ENDALSO" + str(linenum))

 #Go here if are false

 output.append("FALSE" + str(linenum) + ":")

 output.append("MOV N_[0] INTO " + splitline[0])

 output.append("ENDALSO" + str(linenum) + ":")

 elif splitline[3] == "EITHER":

 #Check if first val is not 0 - if it is jump to true

 output.append("JMPNE N_[0] " + var1 + " TO TRUE" + str(linenum))

 #check second val = 0, if it is jump fail

 output.append("JMPNE N_[0] " + var2 + " TO TRUE" + str(linenum))

 #If made it here both are 0 so false

 output.append("MOV N_[0] INTO " + splitline[0])

 output.append("LOD N_[0]")

 output.append("JMP ENDEITHER" + str(linenum))

 #Go here if either are true

 output.append("TRUE" + str(linenum) + ":")

 output.append("MOV N_[1] INTO " + splitline[0])

 output.append("ENDEITHER" + str(linenum) + ":")

 cont = 1

 return cont

#Calls the appropriate multiply library call based on the given values - writes the appropriate asm

#Takes- 2 variables, the result label, and the length of the largest variable, and the linenumber

def multiply(var1, var2, result, length, linenum):

 multType = str(length * 4)

 file = "asm-library/Mult" + multType + ".s"

 if file not in included:

 output.append("INCL " + file)

 included.append(file)

Page 282 of 312

 length = str(length)

 #print var1

 #print var2

 #print result

 #print length

 op = multinibOp(length, "MOV")

 output.append(op + " " + var1 + " INTO Mult" + multType + "_Op1[1]")

 output.append(op + " " + var2 + " INTO Mult" + multType + "_Op2[1]")

 output.append("MOVADDR Return" + str(linenum) + " INTO Mult" + multType +

"_RetAddr[1]")

 output.append("LOD N_[0]")

 #unsgined

 if(var1 not in signed and var2 not in signed):

 if int(length) == 4:

 output.append("STR Mult4_Op1[0]")

 output.append("STR Mult4_Op2[0]")

 else:

 output.append("STR Mult" + multType + "_Op1Ex")

 output.append("STR Mult" + multType + "_Op2Ex")

 output.append("JMP Mult" + multType + "_UnsignedEntry")

 #signed

 else:

 output.append("JMP Mult" + multType + "_SignedEntry")

 output.append("Return" + str(linenum) + ":")

 output.append("NOP 0")

 resLength = varLength(result)

 op = multinibOp(resLength, "MOV")

 output.append(op + " Mult" + multType + "_Ans INTO " + result)

#Checks if assigning a variable to another variable

#Takes: a splitline

def assignment(splitline, linenum):

 cont = 0

 if ((splitline[0] in varnames) and ((len(splitline) == 3) or (splitline[2] == "CALL") or

splitline[3] == "SIGNED")):

 length = varLength(splitline[0])

 #If assigning a variable to antoehr variable

 if(splitline[2] in varnames):

Page 283 of 312

 output.append("MOV " + splitline[2] + " INTO " + splitline[0])

 #Function return value

 elif(splitline[2] == "CALL"):

 line = splitline[2:]

 functionCall(line, linenum)

 output.append("MOV " + splitline[3] + "_RetVal INTO " + splitline[0])

 #Literal value assignment

 else:

 output.append("MOV N_[" + splitline[2] + "] INTO " + splitline[0])

 #Add to signed list

 if(splitline > 3 and [3] == "SIGNED" and splitline not in signed):

 signed.append(splitline[0])

 cont = 1

 return cont

#Checks a line for any conditionals

#Takes: a splitline, linenum

def conditionals(splitline, linenum):

 cont = 0

 if(splitline[0] in ["IF", "ELSEIF", "ELSE", "ENDIF", "LOOPWHILE", "ENDLOOP",

"LOOPAGAIN", "EXITLOOP", "EXITIF", "EARLYEND"]):

 label = splitline[0]+str(linenum)+"jump"

 output.append("LOD N_[0]")

 if splitline[0] in ["IF", "ELSEIF", "LOOPWHILE"]:

 lengthDif = compareLength(splitline[1], splitline[3])

 #Get length of longer value

 length = longer(splitline[1], splitline[3])

 #print str(length) + "\n"

 #Lengths are the same or a val is a literal

 if lengthDif == 0 or lengthDif == None:

 var1 = literal(splitline[1])

 var2 = literal(splitline[3])

 #Extends the first or second value as needed

 #first var is smaller

 elif lengthDif < 0:

 diff = -lengthDif

 var1 = extend(splitline[1], diff)

 var2 = splitline[3]

 #First var is larger

 elif lengthDif > 0:

Page 284 of 312

 diff = lengthDif

 var1 = splitline[1]

 var2 = extend(splitline[3], diff)

 minnib = 1

 suffix = str(length*4)

 staycond = splitline[2]

 if staycond == "EQUALS":

 jumptype = "JMPNE"

 elif staycond == "NOTEQUALS":

 jumptype = "JMPEQ"

 elif staycond == "GREATER":

 jumptype = "JMPLE"

 elif staycond == "GREATEREQUALS":

 jumptype = "JMPL"

 elif staycond == "LESS":

 jumptype = "JMPGE"

 elif staycond == "LESSEQUALS":

 jumptype = "JMPG"

 if length != minnib:

 jumptype = jumptype + str(suffix)

 splitline[1] = literal(var1)

 splitline[3] = literal(var2)

 if splitline[0] == "IF":

 ifStatementStack.append(label)

 endifStack.append("endif" + str(linenum))

 output.append(jumptype + " " + splitline[1] + " " + splitline[3] + "

TO " + label)

 elif splitline[0] == "ELSEIF":

 output.append("JMP "+str(endifStack[-1]))

 output.append(str(ifStatementStack.pop()) + ":")

 ifStatementStack.append(label)

 output.append(jumptype + " " + splitline[1] + " " + splitline[3] + "

TO " + label)

 elif splitline[0] == "LOOPWHILE":

 output.append("start" + label + ":")

 output.append(jumptype + " " + splitline[1] + " " + splitline[3] + "

TO " + label)

 loopStatementStack.append(label)

Page 285 of 312

 elif splitline[0] == "ELSE":

 output.append("JMP "+str(endifStack[-1]))

 output.append(str(ifStatementStack.pop()) + ":")

 ifStatementStack.append(label)

 elif splitline[0]== "ENDIF":

 output.append(str(ifStatementStack.pop()) + ":")

 output.append(str(endifStack.pop()) + ":")

 elif splitline[0] == "ENDLOOP":

 label = str(loopStatementStack.pop())

 output.append("JMP start"+label)

 output.append(label + ":")

 #GOTO derivatives

 elif splitline[0] == "LOOPAGAIN":

 output.append("JMP start"+str(loopStatementStack[-1]))

 elif splitline[0] == "EXITLOOP":

 output.append("JMP " + str(loopStatementStack[-1]))

 elif splitline[0] == "EXITIF":

 output.append("JMP "+ str(endifStack[-1]))

 #Earlyend

 elif splitline[0] == "EARLYEND":

 output.append("JMP END")

 cont = 1

 return cont

#goto and labels

#Takes: splitline

def goto(splitline):

 cont = 0

 cont = 0

 if(splitline[0] in ["GOTO", "LABEL"]):

 if splitline[0] == "LABEL":

 output.append(splitline[1] + ":")

 elif splitline[0] == "GOTO":

 #apparently load 0 before uncoditional jumps

 output.append("LOD N_[0]")

 output.append("JMP " + splitline[1])

 cont = 1

 return cont

Page 286 of 312

#Checks if the line contains any function properties

#Takes: splitline

def functionProperties(splitline, linenum):

 cont = 0

 global returns

 if splitline[0] == "FUNCTION":

 #Check if function exists:

 if splitline[1] in funcnames:

 print "Error line " + str(linenum) + ": Function " + splitline[1] + " already

declared"

 #Add to funcnames (plus current funcnames length)

 funcnames.append(splitline[1])

 funcNum = len(funcnames)

 funcvars = ''

 #must match declaration sig

 name = splitline[1]

 funcstack.append(name)

 output.append("#" + name + " function begins here")

 #If you ge to here something went wrong so jump to end

 output.append("LOD N_[0]")

 output.append("JMP END")

 output.append(name + "Entry:")

 nextparam = 0

 paramnum = 0

 if len(splitline) > 2:

 #just takes

 if splitline[2] == "TAKES":

 nextparam = 2

 # Using 0 as default val for everything

 while len(splitline) > nextparam + 1:

 data.append(name + "_" + splitline[nextparam + 2] +": .data

" + splitline[nextparam + 1] + " 0")

 varnames.append(name + "_" + splitline[nextparam + 2])

 varsizes.append(splitline[nextparam + 1])

 funcvars += splitline[nextparam + 2] + " "

 nextparam += 3

 paramnum += 1

 elif splitline[2] == "RETURNS":

 #Jsut returns - defaults value to 0

 data.append(name + "_RetVal: .data " + str(splitline[3]) + " 0")

 if len(splitline) > 4:

Page 287 of 312

 #returns and takes

 nextparam = 4

 while len(splitline) > nextparam + 1:

 data.append(name + "_" + splitline[nextparam + 2]

+": .data " + splitline[nextparam + 1] + " 0")

 varnames.append(name + "_" + splitline[nextparam

+ 2])

 varsizes.append(splitline[nextparam + 1])

 funcvars += splitline[nextparam + 2] + " "

 nextparam += 3

 paramnum += 1

 else:

 print "Error on line " + str(linenum) + ": Not a valid function "

+str(splitline[1])

 exit(1)

 #Add variable names to funcVars

 funcVars.append(funcvars)

 cont = 1

 elif splitline[0] == "ENDFUNCTION":

 name = funcstack.pop()

 if returns == 0:

 output.append(name + "_RetAddr:")

 output.append("LOD N_[0]")

 output.append("JMP 0000")

 returns = 0

 cont = 1

 elif splitline[0] == "RETURN":

 name = funcstack[-1]

 output.append("MOV " + splitline[1] + " INTO "+ name + "_RetVal")

 output.append("LOD N_[0]")

 output.append(name + "_RetAddr:")

 output.append("JMP 0000")

 returns = 1

 cont = 1

 return cont

#Checks for and performs function calls

#Takes: splitline, current line number

def functionCall(splitline, linenum):

Page 288 of 312

 cont = 0

 if splitline[0] == "CALL":

 #For this part to work we need to specifiy that functions go at top of program?

 if splitline[1] not in funcnames:

 print "Error on line " + str(linenum) + ": Function " + splitline[1] + " does

not exist"

 #Fill the correct var

 funcVarLoc = funcnames.index(splitline[1])

 funcvars = funcVars[funcVarLoc].split()

 varcnt = 0

 #Has at least one variable

 if len(splitline) >= 3:

 var = literal(splitline[2])

 #output.append("MOV " + var + " INTO " + splitline[1] + "_Param0")

 output.append("MOV " + var + " INTO " + splitline[1] + "_" +

funcvars[varcnt])

 varcnt += 1

 #Has 1+ ASWELL in it

 if len(splitline) > 3:

 paramnum = 1

 nextparam = 3

 while (len(splitline) > nextparam + 1):

 var = literal(splitline[nextparam+1])

 #output.append("MOV " + var + " INTO " + splitline[1] +

"_Param" + str(paramnum))

 output.append("MOV " + var + " INTO " + splitline[1] + "_"

+ funcvars[varcnt])

 varcnt += 1

 nextparam += 2

 paramnum += 1

 output.append("MOVADDR " + splitline[1] + "_Return" + str(linenum) + " INTO

" + splitline[1] + "_RetAddr[1]")

 output.append("LOD N_[0]")

 output.append("JMP " + splitline[1] + "Entry")

 output.append(splitline[1] + "_Return" + str(linenum) + ":")

 output.append("NOP 0")

 cont = 1

 return cont

Page 289 of 312

#TODO compelte this

#Checks if a special asm function is being created - creates the required output

#Takes a splitline

def asmFunction(splitline, linenum):

 global asmFunc

 #First call - initialize function params

 if asmFunc == 0:

 #get rid of ASM

 funcProp = splitline[1:]

 functionProperties(funcProp, linenum)

 asmFunc = 1

 #End function

 elif len(splitline) > 2 and splitline[1] == "ENDFUNCTION":

 asmFunc = 0

 funcProp = splitline[1:]

 functionProperties(funcProp, linenum)

 #Inside a ASM function

 else:

 temp = ''

 #ASM should fall through and labels should be replaced

 for word in splitline:

 #TODO i think im misinterpreting what Ryan/Naomi want me to do here

with the special params?

 if word in varnames:

 temp += "$" + word + " "

 else:

 temp += word + " "

 output.append(temp)

#Checks for included files and does the appropriate stuff for them- can be of type .CB or .s TODO

is it .s?

#Takes a splitline

def includeFile(splitline, linenum):

 cont = 0

 cont = 0

 if len(splitline) == 3 and splitline[0] == "INCLUDE":

 if splitline[1] == "CUTEBASIC":

 files.append(splitline[2])

 elif splitline[1] == "ASM":

 asmFile(splitline[2])

Page 290 of 312

 else:

 print "Error on line: " + str(linenum) + " Not a valid CB or macro asm file"

 exit(1)

 cont = 1

 return cont

def baseaddr(splitline, linenum):

 if splitline[0] == "BASEADDRESS":

 output.append("INF " + splitline[1])

 baseaddress = int(splitline[1])

 return 1

#Pretty much the same as the main loop except it uses included files instead, it deletes them from

the lsit when they are read in

def inlineFile():

 linenum2 = 1

 inputf2 = open(files[-1], 'r')

 name = files[-1]

 #This loop is the compiler section - converts all lines of CB into lines of Macro ASM

 for line2 in inputf2.readlines():

 #Check for comments

 continueBool = checkComment(line2)

 if continueBool == 1:

 linenum2 += 1

 continue

 #Check if line is START or END

 startEnd(line2)

 splitline2 = line2.split()

 #Check for empty line

 if len(splitline2) == 0:

 output.append("") #preserves empty lines, an be changed if unwanted

 linenum2 += 1

 continue

 #Check for asm or passthroc, if found then line is passed through unchanged

 continueBool = asm_passthroc(splitline2)

 if continueBool == 1:

 linenum2 += 1

 continue

 #Check what the line is

 variableDeclaration(splitline2, linenum2)

Page 291 of 312

 unarymath(splitline2, linenum2)

 binarymath(splitline2, linenum2)

 assignment(splitline2, linenum2)

 conditionals(splitline2,linenum2)

 goto(splitline2)

 functionProperties(splitline2, linenum2)

 functionCall(splitline2, linenum2)

 #files(splitline,linenum)

 includeFile(splitline2, linenum2)

 linenum2 += 1

 files.remove(name)

#Takes an ASM file and puts it into our file sepeariting the data and non data sections

#Takes an ASM file

def asmFile(file):

 #This as been replaced by naomi creating a way to handle this in the macro assembly

 #inputf = open(file, 'r')

 #for line in inputf.readlines():

 # splitline = line.split()

 #Data type

 # if(len(splitline) > 1 and splitline[0][-1] == ":"):

 # data.append(line)

 #Non data

 # else:

 #output.append(line)

 if(file not in included):

 output.append("INCL " + file)

 included.append(file)

 else:

 print "File " + file + " already included\n"

#***

MAIN**

def main():

 global output

 global data

 #data.append("########## DATA SECTION BELOW HERE ##########")

 if len(sys.argv) < 2:

 print 'No file specified'

 quit()

Page 292 of 312

 if len(sys.argv) == 3:

 outputf = open(sys.argv[2], 'w')

 linenum = 1

 files.append(sys.argv[1])

 while(files):

 inputf = open(files[0], 'r')

 #This loop is the compiler section - converts all lines of CB into lines of Macro

ASM

 for line in inputf.readlines():

 #Check for comments

 continueBool = checkComment(line)

 if continueBool == 1:

 linenum += 1

 continue

 #Check if line is START or END

 continueBool = startEnd(line)

 if continueBool == 1:

 linenum += 1

 continue

 splitline = line.split()

 #print splitline

 splitline = localVars(splitline)

 #print splitline

 #Check for empty line

 if len(splitline) == 0:

 output.append("") #preserves empty lines, an be changed if

unwanted

 linenum += 1

 continue

 #Check for asm or passthroc, if found then line is passed through unchanged

 continueBool = asm_passthroc(splitline, linenum)

 if continueBool == 1:

 linenum += 1

 continue

 #Check what the line is

 continueBool = variableDeclaration(splitline, linenum)

 if continueBool == 1:

 linenum += 1

Page 293 of 312

 continue

 continueBool = unarymath(splitline, linenum)

 if continueBool == 1:

 linenum += 1

 continue

 continueBool = binarymath(splitline, linenum)

 if continueBool == 1:

 linenum += 1

 continue

 continueBool = assignment(splitline, linenum)

 if continueBool == 1:

 linenum += 1

 continue

 continueBool = conditionals(splitline,linenum)

 if continueBool == 1:

 linenum += 1

 continue

 continueBool = goto(splitline)

 if continueBool == 1:

 linenum += 1

 continue

 continueBool = functionProperties(splitline, linenum)

 if continueBool == 1:

 linenum += 1

 continue

 continueBool = functionCall(splitline, linenum)

 if continueBool == 1:

 linenum += 1

 continue

 #files(splitline,linenum)

 continueBool = includeFile(splitline, linenum)

 if continueBool == 1:

 linenum += 1

 continue

 continueBool = baseaddr(splitline, linenum)

 if continueBool == 1:

 linenum += 1

Page 294 of 312

 continue

 #Testing a way to inline include instead of adding it just to end(because then

we get issues of stuff being after END)

 while(len(files) > 1):

 inlineFile()

 linenum += 1

 continue

 print "Error - Unkown Values in line: " + str(linenum)

 exit(1)

 #linenum = linenum + 1

 inputf.close()

 del files[0]

 if hasstart == 0:

 print "No START declared!"

 quit(1)

 if hasend == 0:

 print "No END declared!"

 quit(1)

 if hasend == 1 and hasstart == 1:

 if(baseaddress == -1):

 prepend = []

 prepend.append("INF 0x400")

 output = prepend + output

 output = output + data

 for i in output:

 if(len(sys.argv)) == 3:

 outputf.write(i + "\n")

 #print i

 #for i in varsizes:

 # print i

 #for i in varnames:

 # print i

 quit(0)

This if only runs if this file is called as a script - if it is included, it doesn't

if __name__ == "__main__":

 main()

Note: There is extensive amount of code that has been developed to design the Nibble Knowledge

Computer. All of the code for different aspects of the software is located in an online, web-based

Git repository hosting service. The Code is accessible through the link below:

https://github.com/Nibble-Knowledge

https://github.com/Nibble-Knowledge

Page 295 of 312

16.6 Software – Complete Macro Assembler

The macro assembler receives a macro assembly file as an input, and outputs a non-label replaced

assembly file. It goes through the macro assembly file line by line and translates macro instructions

into their appropriate base assembly instructions. It is setup with a variety of dictionaries which

check for keywords in the macro assembly, and store the translated assembly instructions in a

buffer. After all of the lines have been traversed in the macro file the buffer is output as a fully

functional assembly file which can be handled by the label replacer or the assembler.

#!/usr/bin/python

Naomi Hiebert coded this

#import our data structures

from accMacDict import accMac

from unaMacDict import unaMac

from binMacDict import binMac

from jmpMacDict import jmpMac

from asmDicts import opcodes, unaryOpcodes, dataTypes

#import global variables

import globalVars

The real heart of the operation - identifies macros anywhere,

including inside other macros! Tends to get called recursively

since macros inside macros need to be expanded inside macros.

#Takes: a split line

#Returns: a list of (joined) lines

def expandline(splitline):

 expLine = []

 if isFallthroughLine(splitline): #the base case - encompasses several other cases

 expLine.append(" ".join(splitline))

 elif isINFLine(splitline):

 getINFValue(splitline)

 elif isIncludeStatement(splitline):

 expLine.append(handleInclude(splitline))

 elif isAccMacro(splitline):

 expLine.extend(expandAccMacro(splitline))

Page 296 of 312

 elif isUnaryMacro(splitline):

 expLine.extend(expandUnaryMacro(splitline))

 elif isBinaryMacro(splitline):

 expLine.extend(expandBinaryMacro(splitline))

 elif isJumpMacro(splitline):

 expLine.extend(expandJumpMacro(splitline))

 else:

 syntaxfail(splitline)

 return expLine

#boolean functions - for identifying macros and syntax errors

#all the base cases return true on this line

def isFallthroughLine(splitline):

 if isBlankOrComment(splitline):

 return True

 elif isNativeASM(splitline):

 return True

 elif isSoleLabel(splitline):

 return True

 elif isData(splitline):

 return True

 else:

 return False

#INF header lines get grabbed

def isINFLine(splitline):

 if len(splitline) == 2 and splitline[0] == "INF":

 return True

 else:

 return False

#blank or comment lines fall through unchanged

def isBlankOrComment(splitline):

 if len(splitline) == 0 or splitline[0][0] == '#' or splitline[0][0] == ";":

 return True

 else:

 return False

#checks if it's native ASM.

def isNativeASM(splitline):

Page 297 of 312

 if len(splitline) == 2 and splitline[0] in opcodes:

 if globalVars.DataFields:

 structurefail(splitline)

 return True

 elif len(splitline) == 1 and splitline[0] in unaryOpcodes:

 if globalVars.DataFields:

 structurefail(splitline)

 return True

 else:

 return False

#checks if it fits the standard label syntax, alone on a line

def isSoleLabel(splitline):

 if len(splitline) == 1 and splitline[0][-1] == ':':

 return True

 else:

 return False

#checks if it's a data declaration, possibly with label

def isData(splitline):

 if len(splitline) > 1 and splitline[0] in dataTypes:

 globalVars.DataFields = True

 return True

 elif len(splitline) > 2 and splitline[1] in dataTypes:

 globalVars.DataFields = True

 return True

 else:

 return False

#detects INCL statements

def isIncludeStatement(splitline):

 if splitline[0] == "INCL" and len(splitline) == 2:

 return True

 else:

 return False

#detects accumulator-based macros

def isAccMacro(splitline):

 if len(splitline) == 2 and splitline[0] in accMac and splitline[1] == "ACC":

 return True

 else:

 return False

#detects unary operation macros

def isUnaryMacro(splitline):

Page 298 of 312

 if len(splitline) == 4 and splitline[0] in unaMac and splitline[2] == "INTO":

 return True

 elif len(splitline) == 2 and splitline[0] in unaMac and splitline[1] != "ACC":

 return True

 else:

 return False

#detects binary operation macros

def isBinaryMacro(splitline):

 if len(splitline) == 5 and splitline[0] in binMac and splitline[3] == "INTO":

 return True

 elif len(splitline) == 3 and splitline[0] in binMac:

 return True

 else:

 return False

#detects jump macros

def isJumpMacro(splitline):

 if len(splitline) == 5 and splitline[0] in jmpMac and splitline[3] == "TO":

 return True

 else:

 return False

#complains when it can't figure out what you're saying

def syntaxfail(errorline):

 raise Exception("Syntax Error!", " ".join(errorline))

#complains when you put data in front of instructions

def structurefail(errorline):

 raise Exception("Structural Error: Instructions cannot be placed after data fields!",

 " ".join(errorline))

#complains when you ask for the fifth or greater nibble of an address

def addroffsetfail(errortoken):

 raise Exception("Addressing Error: Addresses are only four nibbles long!", errortoken)

#replacement functions - expand those macros!

The simplest expasion function, since no acc macro

takes any arguments. Some might contain other macros

though, so we still need to check

#Takes: a split line (as list of single-word strings)

#Returns: a list of (joined) lines (possibly a single-element list)

Page 299 of 312

def expandAccMacro(inMac):

 outlines = []

 for line in accMac[inMac[0]].splitlines():

 countMacroUsage(line.split())

 outlines.extend(expandline(line.split()))

 return outlines

Really the only difference between unary and binary is

the number of arguments. That's why the functions are

almost identical.

#Takes: a split line

#Returns: a list of (joined) lines

def expandUnaryMacro(inMac):

 outlines = []

 op1 = inMac[1]

 #Assume in-place operation if no dest given

 if len(inMac) == 4:

 dest = inMac[3]

 else:

 dest = op1

 for line in unaMac[inMac[0]].splitlines():

 splitline = line.split()

 #replace our placeholder labels with the input ones

 splitline = replaceLabels(splitline, "$op1", op1)

 splitline = replaceLabels(splitline, "&op1", op1)

 splitline = replaceLabels(splitline, "$dest", dest)

 countMacroUsage(splitline)

 #recursively expand the resulting line

 outlines.extend(expandline(splitline))

 return outlines

#Takes: a split line

#Returns: a list of lines

def expandBinaryMacro(inMac):

 outlines = []

 op1 = inMac[1]

 op2 = inMac[2]

 if len(inMac) == 5:

 dest = inMac[4]

Page 300 of 312

 else:

 dest = op1

 for line in binMac[inMac[0]].splitlines():

 splitline = line.split()

 #replace our placeholder labels with the input ones

 splitline = replaceLabels(splitline, "$op1", op1)

 splitline = replaceLabels(splitline, "$op2", op2)

 splitline = replaceLabels(splitline, "$dest", dest)

 countMacroUsage(splitline)

 #recursively expand the resulting line

 outlines.extend(expandline(splitline))

 return outlines

Frankly, this is no different from the operation macros.

I just split them into different dictionaries for ease of

coding and maintenance. The only cost of that decision was

having to write this function, which is basically identical

to the functions above.

#Takes: a split line

#Returns: a list of lines

def expandJumpMacro(inMac):

 outlines = []

 op1 = inMac[1]

 op2 = inMac[2]

 dest = inMac[4]

 for line in jmpMac[inMac[0]].splitlines():

 splitline = line.split()

 #replace our placeholder labels with the input ones

 splitline = replaceLabels(splitline, "$op1", op1)

 splitline = replaceLabels(splitline, "$op2", op2)

 splitline = replaceLabels(splitline, "$dest", dest)

 countMacroUsage(splitline)

 #recursively expand the resulting line

 outlines.extend(expandline(splitline))

 return outlines

One of the more complex bits of code in this script, if only

because of the amount of string operations involved. Takes

macros and part of their context, and replaces the $-marked

Page 301 of 312

placeholder tokens in the macros with the actual labels they

should hold. Also does math on memory offsets, so we don't

have to define a new label for each nibble of memory. Finally,

keeps up the counter on the amount of memory used internal to

the macros we're using. This allows us to declare only as much

macro scratch space as we need.

#Takes: a split line,

the placeholder (starts with $ or maybe &) label to replace

the new label (maybe with [offset]) to replace it with

#Also note that the placeholder in the line may also have an offset

#Returns: a split line

#Edits: global "memUsed" variable, if necessary

def replaceLabels(splitline, oldlabel, replabel):

 outline = []

 for token in splitline:

 #put it in the output line, adapted

 if token.startswith(oldlabel) and "$" in oldlabel:

 outline.append(reptoken(token, replabel))

 elif token.startswith(oldlabel) and "&" in oldlabel:

 outline.append(repaddress(token, replabel))

 else:

 #not the label we're looking for

 outline.append(token)

 return outline

def countMacroUsage(outline):

 #check if we're using macro memory. If so, we might need to

 #expand our macro memory bank.

 #We can get away with only checking the last token on the line

 #because macro memory is always assigned to before it is used,

 #and assignment is always to the last label on a line.

 if "macro[" in outline[-1]:

 macoffset = outline[-1][outline[-1].index('[') + 1 : outline[-1].index(']')]

 macoffset = int(macoffset, 16)

 macoffset += 1

 if macoffset > globalVars.memUsed:

 globalVars.memUsed = macoffset

#Takes: The token to replace (maybe with offset, starts with $)

The new label to replace things with

#Returns:

A new token, with calculate labels

Page 302 of 312

#Assumes:

If replabel or token uses the "&" syntax, it already has

the trailing [] present, as &(label[A])[B] but definitely

not &(label[A]). This is always the case if this program

applied the "&" syntax itself; users might break things.

def reptoken(token, replabel):

 #default values, if no offset found

 oldoffset = 0

 repoffset = 0

 #get the offset from the replacement, if necessary

 if '[' in replabel and ']' in replabel:

 repoffset = replabel[replabel.rindex('[') + 1 : replabel.rindex(']')]

 repoffset = hexSmartInt(repoffset)

 #and from the old label, if necessary

 if '[' in token and ']' in token:

 oldoffset = token[token.rindex('[') + 1 : token.rindex(']')]

 oldoffset = hexSmartInt(oldoffset)

 #add them together

 newoffset = oldoffset + repoffset

 #smash together the new token

 if '[' in replabel:

 newtoken = replabel[:replabel.rfind('[')] + '[' + hex(newoffset)[2:] + ']'

 else:

 newtoken = replabel + '[' + hex(newoffset)[2:] + ']'

 if '&' in newtoken and newoffset > 3:

 addroffsetfail(newtoken)

 return newtoken

#Takes: A token to replace (maybe with offset in [0:4], starts with &)

A label to replace it with (completely unrelated offset, not already using &)

#Returns: A token formed as &(replabel[repoffset])[tokenoffset]

def repaddress(token, replabel):

 repoffset = 0

 addroffset = 0

 #get the offset from the replacement, if necessary

 if '[' in replabel and ']' in replabel:

 repoffset = replabel[replabel.index('[') + 1 : replabel.index(']')]

 repoffset = int(repoffset, 16)

 replabel = replabel[:replabel.find('[')]

Page 303 of 312

 #and from the old label, if necessary

 if '[' in token and ']' in token:

 addroffset = token[token.index('[') + 1 : token.index(']')]

 addroffset = int(addroffset, 16)

 token = token[:token.find('[')]

 #assemble new token

 newtoken = "&(" + replabel + '[' + hex(repoffset)[2:] + "])[" + hex(addroffset)[2:] + ']'

 return newtoken

#deal with include statements by adding them to the FList queue

def handleInclude(splitline):

 if splitline[1] not in globalVars.FList:

 globalVars.FList.append(splitline[1])

 return ";Included " + splitline[1]

 else:

 return ";Ignored repeated include: " + splitline[1]

#deal with INF statements by, if they're in the first file,

#setting out output INF statement to have the given value.

#If there's no statement in the first file, use the default

#(1024).

def getINFValue(splitline):

 if globalVars.FIndex != 0:

 return

 else:

 globalVars.BAddr = int(splitline[1], 0)

#Like int(token, 0) but defaults to hexadecimal.

def hexSmartInt(token):

 if token[0] == '0' and not token.isdigit():

 if len(token) > 2 and token[1] == 'd':

 return int(token[2:], 10)

 else:

 return int(token, 0)

 else:

 return int(token, 16)

Note: There is extensive amount of code that has been developed to design the Nibble Knowledge

Computer. All of the code for different aspects of the software is located in an online, web-based

Git repository hosting service. The Code is accessible through the link below:

https://github.com/Nibble-Knowledge

https://github.com/Nibble-Knowledge

Page 304 of 312

16.7 Library Function Example – 32-Bit Multiplication

This is the macro assembly library function for performing 32-bit multiplications. It takes in two

numbers and returns the 32-bit multiplied value of them. It can perform signed or unsigned 32-bit,

or unsafe 64-bit multiplication. It must be included in any assembly file that wishes to call it, and

the return address must be updated before being called using self-modifying code, which is

described in the macro assembler.

#This function can be called three ways:

-signed 32-bit multiplication

-unsigned 32-bit multiplication

-unsafe 64-bit multiplication

#to call Mult32 as signed 32 multiplication:

MOV32 $Op1 INTO Mult32_Op1

MOV32 $Op2 INTO Mult32_Op2

MOVADDR Return INTO Mult32_RetAddr[1]

LOD N_[0]

JMP Mult32_SignedEntry

Return:

NOP 0

#to call Mult32 as unsigned 32 multiplication:

MOV32 $Op1 INTO Mult32_Op1

MOV32 $Op2 INTO Mult32_Op2

MOVADDR Return INTO Mult32_RetAddr[1]

LOD N_[0]

STR Mult32_Op1Ex

STR Mult32_Op2Ex

JMP Mult32_UnsignedEntry

Return:

NOP 0

#to call Mult32 as (sign-agnostic) 64-bit multiplication:

MOV64 $Op1 INTO Mult32_1full

MOV64 $Op2 INTO Mult32_2full

MOVADDR Return INTO Mult32_RetAddr[1]

LOD N_[0]

JMP Mult32_64Entry

Return:

NOP 0

Page 305 of 312

#64-bit answer is now in Mult32_Ans.

#The answer will be determined according

#to the same signedness as the call.

#If you only want a 32-bit answer,

#look in Mult32_Ans[8]

Mult32_SignedEntry:

;Get sign-extension bit patterns

LOD Mult32_Op1[0]

SIGNEX ACC

STR Mult32_Op1Ex[0]

LOD Mult32_Op2[0]

SIGNEX ACC

STR Mult32_Op2Ex[0]

Mult32_UnsignedEntry:

;appropriately extend Op1

LOD Mult32_Op1Ex[0]

STR Mult32_1full[0]

STR Mult32_1full[1]

STR Mult32_1full[2]

STR Mult32_1full[3]

STR Mult32_1full[4]

STR Mult32_1full[5]

STR Mult32_1full[6]

STR Mult32_1full[7]

;appropriately extend Op2

LOD Mult32_Op2Ex[0]

STR Mult32_2full[0]

STR Mult32_2full[1]

STR Mult32_2full[2]

STR Mult32_2full[3]

STR Mult32_2full[4]

STR Mult32_2full[5]

STR Mult32_2full[6]

STR Mult32_2full[7]

;64-bit version needs no extensions

Mult32_64Entry:

LOD N_[0]

STR Mult32_Ans[0]

STR Mult32_Ans[1]

STR Mult32_Ans[2]

Page 306 of 312

STR Mult32_Ans[3]

STR Mult32_Ans[4]

STR Mult32_Ans[5]

STR Mult32_Ans[6]

STR Mult32_Ans[7]

STR Mult32_Ans[8]

STR Mult32_Ans[9]

STR Mult32_Ans[A]

STR Mult32_Ans[B]

STR Mult32_Ans[C]

STR Mult32_Ans[D]

STR Mult32_Ans[E]

STR Mult32_Ans[F]

STR Mult32_loopCount[0]

LOD N_[1]

STR Mult32_mask[0]

;Outer loop

Mult32_outerLoopStart:

LOD Mult32_2full[F]

STR Mult32_o2nib

;Inner loop

Mult32_innerLoopStart:

LOD Mult32_o2nib

NND Mult32_mask

NND N_[F]

;Add, if necessary

JMP Mult32_doneAdd

ADD64 Mult32_1full Mult32_Ans INTO Mult32_Ans

;Mess with operands appropriately

Mult32_doneAdd:

LSHIFT64 Mult32_1full INTO Mult32_1full

LROT Mult32_mask INTO Mult32_mask

;Leave inner loop, if it is time to do so

UCLC ACC

LOD Mult32_mask

ADD N_[F]

JMP Mult32_doneInner

LOD N_[0]

JMP Mult32_innerLoopStart

;Done inner loop. Do outer loop stuff.

Mult32_doneInner:

LOD Mult32_2full[E]

Page 307 of 312

STR Mult32_2full[F]

LOD Mult32_2full[D]

STR Mult32_2full[E]

LOD Mult32_2full[C]

STR Mult32_2full[D]

LOD Mult32_2full[B]

STR Mult32_2full[C]

LOD Mult32_2full[A]

STR Mult32_2full[B]

LOD Mult32_2full[9]

STR Mult32_2full[A]

LOD Mult32_2full[8]

STR Mult32_2full[9]

LOD Mult32_2full[7]

STR Mult32_2full[8]

LOD Mult32_2full[6]

STR Mult32_2full[7]

LOD Mult32_2full[5]

STR Mult32_2full[6]

LOD Mult32_2full[4]

STR Mult32_2full[5]

LOD Mult32_2full[3]

STR Mult32_2full[4]

LOD Mult32_2full[2]

STR Mult32_2full[3]

LOD Mult32_2full[1]

STR Mult32_2full[2]

LOD Mult32_2full[0]

STR Mult32_2full[1]

UCLC ACC

LOD Mult32_loopCount

ADD N_[1]

STR Mult32_loopCount

;Return, if it is time

Mult32_RetAddr:

JMP 0000

LOD N_[0]

JMP Mult32_outerLoopStart

Mult32_Ans: .data 16

Mult32_1full: .data 8

Mult32_Op1: .data 8

Mult32_2full: .data 8

Mult32_Op2: .data 8

Page 308 of 312

Mult32_loopCount: .data 1

Mult32_mask: .data 1

Mult32_o2nib: .data 1

Mult32_Op1Ex: .data 1

Mult32_Op2Ex: .data 1

Note: There is extensive amount of code that has been developed to design the Nibble Knowledge

Computer. All of the code for different aspects of the software is located in an online, web-based

Git repository hosting service. The Code is accessible through the link below:

https://github.com/Nibble-Knowledge

Page 309 of 312

16.8 References

Note: References are listed using the APA Format.

1. Harris, D., & Harris, S. (2007). Digital design and computer architecture (2nd ed., p. 9, 79,

109-171, 239-252, 295-369). Amsterdam: Morgan Kaufmann.

2. Sedra, A., & Smith, K. (2013). Microelectronic Circuits (6th Ed.). New York: Oxford

University Press.

3. Roth, C. (2008). Digital systems design using VHDL (2nd Ed.). Boston: PWS Pub.

4. Rabaey, J., & Chandrakasan, A. (2003). Digital integrated circuits: A design

perspective (2nd Ed.). Upper Saddle River, N.J.: Pearson Education.

5. Zilog, Inc. (2015). Z80 Microprocessor, Z80 CPU User Manual. UM008007-0715. Zilog

Inc.: Author: Zilog, Inc.

6. ZX Spectrum 48k Service Manual (n.d.). Retrieved October 12, 2015, from

http://www.1000bit.it/support/manuali/sinclair/zxspectrum/sm/service.html

7. Intel Corporation. Moore's Law 40th Anniversary. (1965). Retrieved October 12, 2015,

from http://www.intel.com/pressroom/kits/events/moores_law_40th/

8. CMOS 4-bit latch. (2003, June 1). Texas Instrument Inc. Retrieved November 2, 2015,

from http://www.ti.com/lit/ds/symlink/cd4508b-mil.pdf

9. CMOS Dual Up-counters. (2004, March 1). Texas Instrument Inc. Retrieved November 2,

2015, from http://www.ti.com/lit/ds/symlink/cd4520b.pdf

10. CMOS Dual Up-counters. (2004, March 1). Texas Instrument Inc. Retrieved November 2,

2015, from http://www.ti.com/lit/ds/symlink/cd4518b.pdf

http://www.1000bit.it/support/manuali/sinclair/zxspectrum/sm/service.html

Page 310 of 312

11. Dual Positive-Edge-Triggered D-Type Flip-Flops With Clear And Preset. (1993, October

1). Texas Instrument Inc. Retrieved November 2, 2015, from

http://www.ti.com/lit/ds/symlink/sn54f74.pdf

12. LM741 Operational Amplifier. (2015, October 1). Texas Instrument Inc. Retrieved

November 2, 2015, from http://www.ti.com/lit/ds/symlink/lm741.pdf

13. Quadruple 2-Input Positive-NAND Gates. (2003, October 1). Texas Instrument Inc.

Retrieved November 2, 2015, from http://www.ti.com/lit/ds/symlink/sn74ls00.pdf

14. TRIPLE 3-INPUT POSITIVE-NAND GATES. (2003, April 1). Texas Instrument Inc.

Retrieved November 2, 2015, from http://www.ti.com/lit/ds/symlink/sn74ls10.pdf

15. Van Roon, T. (2009, December 18). Transistor Tutorial: Power Amplifiers, Part 4.

Retrieved November 22015, from

http://www.sentex.ca/~mec1995/tutorial/xtor/xtor4/xtor4.html

16. Yanushkevich. S. (2014). Lab 4: PS/2 Keyboard. ENEL 453: Digital Systems Design.

Department of Electrical and Computer Engineering. University of Calgary, Calgary, AB

17. Lamers. L (1994). AT Attachment Interface. American National Standards of Accredited

Standards Committee X3. Washington DC.

18. IEEE 802.3™-2012 – IEEE Standard for Ethernet. (2012, December 28). Retrieved

November 2, 2015, from https://standards.ieee.org/about/get/802/802.3.html

19. Ickes, N. (2004, April 29). VGA Video (6.111 labkit). Retrieved November 2, 2015, from

http://web.mit.edu/6.111/www/s2004/NEWKIT/vga.shtml

20. Valcarce, J. (2015, April 5). VGA Video Signal Format and Timing Specifications.

http://www.sentex.ca/~mec1995/tutorial/xtor/xtor4/xtor4.html
https://standards.ieee.org/about/get/802/802.3.html
http://web.mit.edu/6.111/www/s2004/NEWKIT/vga.shtml

Page 311 of 312

Retrieved November 2, 2015, from http://www.javiervalcarce.eu/html/vga-signal-format-

timming-specs-en.html

21. Walker, J. (2006, January 10). How Many Dots Has It Got? Retrieved November 2, 2015,

from http://www.fourmilab.ch/documents/howmanydots/

22. Yanushkevich. S. (2014). Lab 3: VGA Display. ENEL 453: Digital Systems Design.

Department of Electrical and Computer Engineering. University of Calgary, Calgary, AB

23. Chapweske, A. (2005, September 3). The PS/2 Mouse/Keyboard Protocol. Retrieved from

http://www.computer-engineering.org/ps2protocol/

24. Chapweske, A. (2004, January 3). The PS/2 Keyboard Intervace. Retrieved from

http://www.computer-engineering.org/ps2keyboard/scancodes2.html

25. Department of Electrical and Computer Engineering. (2015). Digital system design lab 4

manual and pre-lab exercises. Calgary, AB: University of Calgary.

26. PS2 - PS/2 Controller. (2009, February 12). Retrieved from

http://valhalla.altium.com/Learning-Guides/PS2-PS2_Controller.pdf

27. Parallel ATA. (n.d.). In Wikipedia. Retrieved Aprril 10, 2016, from

https://en.wikipedia.org/wiki/Parallel_ATA

28. Counter (digital). (n.d.). Retrieved April 14, 2016, from

https://en.wikipedia.org/wiki/Counter_(digital)

29. Asynchronous Counters. (n.d.). Retrieved April 14, 2016, from

http://www.allaboutcircuits.com/textbook/digital/chpt-11/asynchronous-counters/

30. Synchronous Counters. (n.d.). Retrieved April 14, 2016, from

http://www.allaboutcircuits.com/textbook/digital/chpt-11/synchronous-counters/

http://www.javiervalcarce.eu/html/vga-signal-format-timming-specs-en.html
http://www.javiervalcarce.eu/html/vga-signal-format-timming-specs-en.html
http://www.fourmilab.ch/documents/howmanydots/
http://www.computer-engineering.org/ps2protocol/
http://www.computer-engineering.org/ps2keyboard/scancodes2.html
http://valhalla.altium.com/Learning-Guides/PS2-PS2_Controller.pdf
https://en.wikipedia.org/wiki/Parallel_ATA
https://en.wikipedia.org/wiki/Counter_(digital)
http://www.allaboutcircuits.com/textbook/digital/chpt-11/asynchronous-counters/
http://www.allaboutcircuits.com/textbook/digital/chpt-11/synchronous-counters/

Page 312 of 312

31. Dong. X., Peng. M., Al-Khalili. A. (2015). Design of a 4-Bit Comparator. Project Report

for COEN6511: ASIC Design. Department of Electrical and Computer Engineering.

Concordia University, Montreal, Quebec

32. JPC., JWD. (2002). Basics: Machine, software, and program design. McGraw-Hill, Inc.

33. Tyson, J. (2000, August 20). How Computer Memory Works. Retrieved March 4, 2016,

from http://computer.howstuffworks.com/computer-memory3.htm

34. Gramlich, W. C. (1993). Introduction to Computer Memory. Retrieved March 27, 2016,

from http://gramlich.net/projects/computer_tutorial/memory.html

35. Silberschatz, Galvin, & Gagne. (2009). Operating System Concepts. Retrieved March 3,

2016, from http://iit.qau.edu.pk/books/OS_8th_Edition.pdf

36. Gramlich, W. C. (1993). Everything is a Number. Retrieved March 27, 2016, from

http://gramlich.net/projects/computer_tutorial/numbers.html

